1. ISOMAX PROGRAMMING

IsoMax is a programming language based on Finite State Machine (FSM) concepts applied to software, with a
procedural language (derived from Forth) underneath it. The closest description to the FSM construction type is a
“One-Hot” Mealy type of Timer Augmented Finite State Machines. More on these concepts will come later.

2. QUICK OVERVIEW

What is [soMax™? [soMax™ is a real time operating system / language.

How do you program in IsoMax™? You create state machines that can run in a virtually parallel architecture.

Step Programming Action Syntax

1 Name a state machine MACHINE <name>

2 Select this machine ON-MACHINE <name>

3 Name any states appended on the machine APPEND-STATE <name>

APPEND-STATE <name>

<NAME>

4 Describe transitions from states to states IN-STATE
<state>

CONDITION
<Boolean>

d O CAUSES
<action>

THEN-STATE
<state>

TO-HAPPEN

5 Test and Install {as required}

<namel>

What do you have to write to make a state machine in IsoMax™? You give a machine a name, and then tell the
system that’s the name you want to work on. You append any number of states to the machine. You describe any
number of transitions between states. Then you test the machine and when satisfied, install it into the machine chain.

What is a transition? A transition is how a state machine changes states. What’s in a transition? A transition has four
components; 1) which state it starts in, 2) the condition necessary to leave, 3) the action to take when the condition
comes true, and 4) the state to go to next time. Why are transitions so verbose? The structure makes the transitions
easy to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-STATE and TO-
HAPPEN are like the five brackets around a table of four things.

IN-STATE CONDITION CAUSES THEN-STATE TO-HAPPEN
\ /\ /\ /\ /

| <fromstate> | <Boolean> | <action> | <to state> |

In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE and TO-
HAPPEN are always there (with some possible options to be set out later). The “meat slices” between the “slices of
bread” are the hearty stuffing of the description. You will fill in those portions to your own needs and liking. The
language provides “the bread” (with only a few options to be discussed later).

So here you have learned a bit of the syntax of [soMax™. Machines are defined, states appended. The transitions are
laid out in a pattern, with certain words surrounding others. Procedural parts are inserted in the transitions between
the standard clauses.

The syntax is very loose compared to some languages. What is important is the order or sequence these words come
in. Whether they occur on one line or many lines, with one space or many spaces between them doesn’t matter. Only
the order is important.

3. THREE MACHINES

Now let’s take a first step at exploring IsoMax™ the language by looking at some very simple examples. We’ll
explore the language with what we’ve just tested earlier, the LED words. We’ll add some machines that will use the
LED’s as outputs, so we can visually “see” how we’re coming along.

4. REDTRIGGER

First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s presented first without
detailed explanation, entered and tested. Then we will explain the language to create the machine step by step

(THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.
(IF YOU’'VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE

HEX

OFF?

1 =

IF
2DUP 3 + @ SWAP FFFF XOR AND OVER
2DUP 2 + @ SWAP FFFF XOR AND OVER
1 + @ AND 0=

ELSE

w
+

)
+

SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=
THEN

DECIMAL

MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

RT SET-STATE INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

There you have it, a complete real time program in two lines of IsoMax™, and one additional line to install it. A
useful virtual machine is made here with one state and one transition.

This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-RETRIGGERABLE ONE-
SHOT TIMER: Produces a preset timed output signal on the occurrence of an input signal. The timed output
response may begin on either the leading edge or the trailing edge of the input signal. The preset time (in this case:
infinity) is independent of the duration of the input signal.) For an example of a hardware non-retriggerable one-
shot, see http:// www.philipslogic.com/products/hc/pdf/74hc221.pdf.

AN B I T
Z_1 b —
-]
IIE ol EI Vee i "CEXT 14 3 R
181 (18] tRguT Sy exr & LIS P
i TRpy!C
LYEY 4] 1 Cext : ;‘ ZIEEH;E:T 1: LLEVR TS
[T 3] 1a v 12
] [
2[5 a2 73] 26 Fry .m_h. WL s
s I = =7
P12
gyriCexr 7] 70} 28 11 A
ane 1] [¥] 2% LR N 8 -
1233008 I st nox
FERERIS
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 1EC logic symbal.

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes. PA7 normally has a pull up
resistor that will keep it “on”, or “high” if nothing is attached. So attaching push button from PA7 to ground, or even
hooking a jumper test lead to ground and pushing the other end into contact with the wire lead in PA7, will cause
PA7 to go “off” or “low”, and the REDLED will come on.

PA7
(In these examples, any port line that can be an input could be used. PA7 here, PB7 and PB6 later, were chosen

because they are at the bottom of J1 and the easiest for you to access.)

Now if you want, type these lines shown above in. (If you are reading this manual electronically, you should be able
to highlight the text on screen and copy the text to the clipboard with Cntl-C. Then you may be able to paste into
your terminal program. On MaxTerm, the command to down load the clipboard is Alt-V. On other windows
programs it might be Cntl-V.)

Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to have the LED’s on, unless
programmed otherwise by the user. So to be useful we must reset this one-shot. Enter:

REDLED OFF

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf

Now install the REDTRIGGER by installing it in the (now empty) machine chain.

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

PA7

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove the ground or release the
push button. The red LED does not go back off. The program is still running, even though all visible changes end at
that point. To see that, we’ll need to manually reset the LED off so we can see something happen again. Enter.

REDLED OFF

If we ground PA7 again, the red LED will come back on, so even though we are still fully interactive with the
IsoPod™ able to type commands like REDLED OFF in manually, the REDTRIGGER machine is running in the
background.

Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take the time explain the
concepts of this new language we skipped over previously.

Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the elements of the program relate
to a state machine diagram. Usually you start to learn a language by learning the syntax, or how and where elements
of the program must be placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on any
line with any amount of white space between them as long as the sequence remains the same. So in the pretty
printing, most things are put on a separate line and have spaces in front of them just to make the relationships easy to
see. Beyond the basic language syntax, a few words have a further syntax associated to them. They must have new
names on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE require a
name following. You will see that they do. More on syntax will come later.

PROGRAM TEXT EQUIVALENT GRAPHIC In.
this
MACHINE REDTRIGGER 4. MAKE A exam
s seormraaen | ACHIVE /6_ BOOLEAN p}ie,
- the
B PA7 OFF?
APPEND-STATE RT
2. ADD A first
Py rogr
IN-STATE STATE REDLED ON Prog
am
RT .
CONDITION line,
PA7 OFF? 5. ACTION we
CAUSES tell
REDLED ON) , / IsoM
THEN-STATE S Abb A ax™
RT TRANSITION ,
7. FROM STATE 8. TO STATE we’re
TO-HAPPEN

making a new virtual machine, named REDTRIGGER. (Any group of characters without a space or a backspace or
return will do for a name. You can be very creative. Use up to 32 characters. Here the syntax is MACHINE followed
by the chosen name.)

MACHINE REDTRIGGER

That’s it. We now have a new machine. This particular new machine is named REDTRIGGER. It doesn’t do
anything yet, but it is part of the language, a piece of our program.

For our second program line, we’ll identify REDTRIGGER as the machine we want to append things to. The syntax
to do this is to say ON-MACHINE and the name of the machine we want to work on, which we named
REDTRIGGER so the second program line looks like this:

ON-MACHINE REDTRIGGER

(Right now, we only have one machine installed. We could have skipped this second line. Since there could be
several machines already in the IsoPod™ at the moment, it is good policy to be explicit. Always use this line before
appending states. When you have several machines defined, and you want to add a state or transition to one of them,
you will need that line to pick the machine being appended to. Otherwise, the new state or transition will be
appended to the last machine worked on.)

All right. We add the machine to the language. We have told the language the name of the machine to add states to.
Now we’ll add a state with a name. The syntax to do this is to say APPEND-STATE followed by another made-up
name of our own. Here we add one state RT like this:

APPEND-STATE RT

States are the fundamental parts of our virtual machine. States help us factor our program down into the important
parts. A state is a place where the computer’s outputs are stable, or static. Said another way, a state is place where
the computer waits. Since all real time programs have places where they wait, we can use the waits to allow other
programs to have other processes. There is really nothing for a computer to do while its outputs are stable, except to
check if it is time to change the outputs.

(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the computer to waste time in a
wait, no backwards branches allowed. It allows a check for the need to leave the state once per scheduled time, per
machine.)

To review, we’ve designed a machine and a sub component state. Now we can set up something like a loop, or
jump, where we go out from the static state when required to do some processing and come back again to a static
wait state.

The rules for changing states along with the actions to do if the rule is met are called transitions. A transition
contains the name of the state the rule applies to, the rules called the condition, what to do called the action, and
“where to go” to get into another state. (We have only one state in this example, so the last part is easy. There is no
choice. We go back into the same state. In machines with more than one state, it is obviously important to have this
final piece.)

There’s really no point in have a state in a machine without a transition into or out of it. If there is no transition into
or out of a state, it is like designing a wait that cannot start, cannot end, and cannot do anything else either.

On the other hand, a state that has no transition into it, but does have one out of it, might be an “initial state” or a
“beginning state”. A state that has a transition into it, but doesn’t have one out of it, might be a “final state” or an
“ending state”. However, most states will have at least one (or more) transition entering the state and one (or more)
transition leaving the state. In our example, we have one transition that leaves the state, and one that comes into the
state. It just happens to be the same one.

Together a condition and action makes up a transition, and transitions go from one specific state to another specific
state. So there are four pieces necessary to describe a transition; 1) The state the machine starts in. 2) the condition
to leave that state 3) the action taken between states and 4) the new state the machine goes to.

Looking at the text box with the graphic in it, we can see the transitions four elements clearly labeled. In the text
version, these four elements are printed in bold. In the equivalent graphic they are labeled as “FROM STATE”,
“BOOLEAN”, “ACTION” and “TO STATE”.

The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7 OFF?. The “ACTION” is
REDLED ON. The “TO STATE” is again RT.

So to complete our state machine program, we must define the transition we need. The syntax to make a transition,
then, is to fill in the blanks between this form: IN-STATE <name> CONDITION <Boolean> CAUSES
<action> THEN-STATE <name> TO-HAPPEN.

Whether the transition is written on one line as it was at first:

IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

Or pretty printed on several lines as it was in the text box:

IN-STATE
RT
CONDITION
PA7 OFF?
CAUSES
REDLED ON
THEN-STATE
RT
TO-HAPPEN

The effect is the same. The five bordering words are there, and the four user supplied states, condition and action are
in the same order and either way do the same thing.

After the transition is added to the program, the program can be tested and
installed as shown above.

State machine diagrams (the graphic above being an example) are nothing new.
are widely used to design hardware. They come with a few minor style
variations, mostly related to how the outputs are done. But they are all very
similar. The figure to the right is a hardware Quadrature design with four states.

While FSM diagrams are also widely known in programming as an abstract
computational element, there are few instances where they are used to design software. Usually, the tools for writing
software in state machines are very hard to follow. The programming style doesn’t seem to resemble the state
machine design, and is often a slow, table-driven “read, process all inputs, computation and output” scheme.

IsoMax™ technology has overcome this barrier, and gives you the ability to design software that looks “like”
hardware and runs “like” hardware (not quite as fast of course, but in the style, or thought process, or “paradigm” of
hardware) and is extremely efficient. The Virtually Parallel Machine Architecture lets you design many little,
hardware-like, machines, rather than one megalith software program that lumbers through layer after layer of if-then
statements. (You might want to refer to the IsoMax Reference Manual to understand the language and its origins.)

5. ANDGATE1

Let’s do another quick little machine and install both machines so you can see them running concurrently.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3

HEX
ON?
1 =
IF
2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
1 + @ AND
ELSE
SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT
THEN
DECIMAL

MACHINE ANDGATE1l ON-MACHINE ANDGATEl APPEND-STATE X
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE X TO-
HAPPEN

X SET-STATE (INSTALL ANDGATE1
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATEl END-MACHINE-CHAIN
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1

There you have it, another complete real time program in three lines of [soMax™, and one additional line to install
it. A useful virtual machine is made here with one state and one transition. This virtual machine acts (almost) like an
AND gate made in hardware.

For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

Fig.1 Pin configuration.

i 0

— 32

1 2
wf] J 12} e ;—:: iv] 3 ——
nfz] [13] 40 AR N .
w[T] 7] 4 & [am e 2 -
w[a] 08] &y A N . -
s R N B q L
v s 1'3& 1z faa vl n

mm — a_| &
oun 7] §]av 13 =
REE LT TIH3803
TFRIRET,

Fig.2 Logic symbol.

Fig.3 1EC logic symbal.

FUNCTION TAEBLE

Fig4 Functional diagram.

{one gate).

A INPUTS CUTPUT
i::D'_DC_ N ni nB nY

L] 1218 L L L
L1A 1¥] 3
iiE}__ Fig.5 HC logic diagram ||:| t' t
Az v gate].
T D= (one gate) H H T
iiDJ:..L Note
12 Jua \ 1. H =HIGH voltage level
ilDﬁ—' N L = LOW voltage level

TIHIAT ¥
" BFLELTY
Fige HCT logic diagram

Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of the time). So by attaching
push buttons to PA7 and PB7 simulating micro switches this little program could be used like an interlock system
detecting “cover closed”.

PROG T T T
LRUG LI L

TO-HAPPEN

MACHINE ANDGATE1 11. MAKE A
MACHINE YELLED OFF
ON-MACHINE ANDGATE1l PA7 ON?
- [/
APPEND-STATE X 9. ‘{DD A PB7 ON? AND
STATE
IN;{STATE YELLED ON
CONDITION
YELLED OFF
PA7 ON?
PB7 ON? AND
CAUSES 10. ADD A
YELLED ON TRANSITION
THEN-STATE
X

(No
w it
is
wort

ment
ioni
ng,
the
exa
mple

is a bit contrived. When you try to make a state machine too simple, you wind up stretching
things you shouldn’t. This example could have acted exactly like an AND gate if two transitions
were used, rather than just one. Instead, a “trick” was used to turn the LED off every time in the
condition, then turn it on only when the condition was true. So a noise spike is generated a real
“and” gate doesn’t have. The trick made the machine simpler, it has half the transitions, but it is
less functional. Later we’ll revisit this machine in detail to improve it.)

Notice both machines share an input, but are using the opposite sense on that input. ANDGATE1 looks for PA7 to be
ON, or HIGH. The internal pull up will normally make PA7 high, as long as it is programmed for a pull up and
nothing external pulls it down.

Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet the two machines
coexist peacefully on the same processor, even sharing the same inputs in different ways.

To see these machines running enter the new code, if you are still running REDTRIGGER, reset (toggle the DTR line
on the terminal, for instance, Alt-T twice in MaxTerm or cycle power) and download the whole of both programs.

Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now causes the same result
for REDTRIGGER, the red LED goes on, but the opposite effect for the yellow LED, which goes off while PA7 is
grounded. Releasing PA7 turns the yellow LED back on, but the red LED remains on.

Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no effect on the red LED, but
turns off the yellow LED while grounded. Grounding both PA7 and PB7 at the same time also turns off the yellow
LED, and turns on the red LED if not yet set.

PB7 PB7 PB7

Notice how the tightly the two machines are intertwined. Perhaps you can imagine how very simple machines with
combinatory logic and sharing inputs and feeding back outputs can quickly start showing some complex behaviors.
Let’s add some more complexity with another machine sharing the PA7 input.

6. BOUNCELESS

We have another quick example of a little more complex machine, one with one state and two transitions.

MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN

Y SET-STATE (INSTALL BOUNCELESS

MACHINE-CHAIN 3EASY
REDTRIGGER
ANDGATE

BOUNCELESS

END-MACHINE-CHAIN

EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY

There you have yet another complete design, initialization and installation of a virtual machine in four lines of

IsoMax™ code.

Another name for the machine in this program is “a bounceless switch”.

Tyl

Double ol 2K

Throns
Swiitch

2K

Eounceles
ClLock Pulse

Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge output signals. They do this
by toggling state when an input first becomes active, and remaining in that state. If you are familiar with hardware,
you might recognize the two gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input is grounded, and will not
flip back until the other input is grounded.

By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off with the press of the PA7
button, or off to on with the press of the PB6. The PA7 button acts as a reset switch, and the PB6 acts as a set

switch.

PROGRAM TEXT

IN-STATE
Y
CONDITION
PA7 OFF?
CAUSES
GRNLED OFF
THEN-STATE
Y
TO-HAPPEN

IN-STATE
Y
CONDITION
PB6 OFF?
CAUSES
GRNLED ON
THEN-STATE
Y
TO-HAPPEN

MACHINE BOUNCELESS

ON-MACHINE BOUNCELESS
APPEND-STATE Y

15. MAKE A
MACHINE
12. ADD A

STATE

13. ADD A
TRANSITION

/

14. ADD A
TRANSITION

HIC YOu

can
see

PA7 OFF? here,
in

GRNLED OFF

IsoM
ax™,
you
can
simul
ate
hardw
are
machi
nes
and
circui
ts,
with

PB6 OFF?

justa
few
lines
of
code.

GRNLED ON

Here we created one machine, gave it one state, and appended two transitions to that state. Then we installed the
finished machine along with the two previous machines. All run in the background, freeing us to program more
virtual machines that can also run in parallel, or interactively monitor existing machines from the foreground.

PA7 PA7

PB7 PB7 PB7 PB7

Notice all three virtual hardware circuits are installed at the same time, they operate virtually in parallel, and the
IsoPod™ is still not visibly taxed by having these machines run in parallel. Further, all three machines share one
input, so their behavior is strongly linked.

7. SYNTAX AND FORMATTING

Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax again, you’ll need to remember
the following. Everything in IsoMax™ is a word or a number. Words and numbers are separated by spaces (or
returns).

Some words have a little syntax of their own. The most common cases for such words are those that require a name
to follow them. When you add a new name, you can use any combinations of characters or letters except (obviously)
spaces and backspaces, and carriage returns. So, when it comes to pretty formatting, you can put as much on one
line as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long as you keep your words
whole. However, some words will require a name to follow them, so those names will have to be on the same line.

In the examples you will see white space (blanks) used to add some formatting to the source text. MACHINE starts at
the left, and is followed by the name of the new machine being added to the language. ON-MACHNE is indented
right by two spaces. APPEND-STATE X is indented two additional spaces. This is the suggested, but not
mandatory, offset to achieve pretty formatting. Use two spaces to indent for levels. The transitions are similarly laid
out, where the required words are positioned at the left, and the user programming is stepped in two spaces.

8. MULTIPLE STATES/MULTIPLE TRANSITIONS

Before we leave the previous “Three Machines”, let’s review the AND machine again, since it had a little trick in it
to keep it simple, just one state and one transition. The trick does simplify things, but goes too far, and causes a
glitch in the output. To make an AND gate which is just like the hardware AND we need at least two transitions.
The previous example, BOUNCELESS was the first state machine with more than one transition. We’ll follow this
precedent and redo ANDGATE?2 with two transitions.

9. ANDGATE2

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM

MACHINE ANDGATE2
ON-MACHINE ANDGATE2
APPEND-STATE X

IN-STATE

X
CONDITION

PA7 ON?

PB7 ON? AND
CAUSES

YELLED ON
THEN-STATE

X
TO-HAPPEN

IN-STATE
X
CONDITION
PA7 OFF?
PB7 OFF? OR
CAUSES
YELLED OFF
THEN-STATE
X
TO-HAPPEN

X SET-STATE (

INSTALL ANDGATE2

EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2

PROGRAM TEXT
MACHINE ANDGATE2

ON-MACHINE ANDGATE2
APPEND-STATE X

IN-STATE

X
CONDITION

PA7 ON?

PB7 ON? AND
CAUSES

YELLED ON
THEN-STATE

X
TO-HAPPEN

IN-STATE
X
CONDITION
PA7 OFF?
PB7 OFF? OR
CAUSES
YELLED OFF
THEN-STATE
X
TO-HAPPEN

9.

18. MAKE A
MACHINE
PA7 ON? PB7 ON? AND

APPEND STATE

YELLED ON

20. ADD 4
TRANSITION

PA7 OFF? PB7 OFF? OR

17. ADD A

TRANSITION YELLED OFF

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice there is an “action”
included in the ANDGATE1 condition clause. See the YELLED OFF statement (highlighted in bold) in ANDGATEL,
not present in ANDGATE2? Further notice the same phrase YELLED OFF appears in the second transition of
ANDGATE?2 as the object action of that transition.

10. TRANSITION COMPARISON
ANDGATE1 ANDGATE2
IN-STATE IN-STATE IN-STATE
X X X
CONDITION CONDITION CONDITION
YELLED OFF
PA7 ON? PA7 ON? PA7 OFF?
PB7 ON? AND PB7 ON? AND PB7 OFF? OR
CAUSES CAUSES CAUSES
YELLED ON YELLED ON YELLED OFF
THEN-STATE THEN-STATE THEN-STATE
X X X
TO-HAPPEN TO-HAPPEN TO-HAPPEN

The way this trick worked was by using an action in the condition clause, every time the scheduler ran the chain of
machines, it would execute the conditions clauses of all transitions on any active state. Only if the condition was
true, did any action of a transition get executed. Consequently, the trick used in ANDGATE1 caused the action of the
second transition to happen when conditionals (only) should be running. This meant it was as if the second transition
of ANDGATE?2 happened every time. Then if the condition found the action to be a “wrong” output in the
conditional, the action of ANDGATE1 ran and corrected the situation. The brief time the processor took to correct the
wrong output was the “glitch” in ANDGATE1’s output.

Now this AND gate, ANDGATEZ2, is just like the hardware AND, except not as fast as most modern versions of
AND gates implemented in random logic on silicon. The latency of the outputs of ANDGATE?2 are determined by
how many times ANDGATE?2 runs per second. The programmer determines the rate, so has control of the latency, to
the limits of the CPU’s processing power.

The original ANDGATE] serves as an example of what not to do, yet also just how flexible you can be with the
language model. Using an action between the CONDITION and CAUSES phrase is not prohibited, but is considered
not appropriate in the paradigm of Isostructure.

An algorithm flowing to determine a single Boolean value should be the only thing in the condition clause of a
transition. Any other action there slows the machine down, being executed every time the machine chain runs.

Most of the time, states wait. A state is meant to take no action, and have no output. They run the condition only to
check if it is time to stop the wait, time to take an action in a transition.

The actions we have taken in these simple machines if very short. More complex machines can have very complex
actions, which should only be run when it is absolutely necessary. Putting actions in the conditional lengthens the
time it takes to operate waiting machines, and steals time from other transitions.

Why was it necessary to have two transitions to do a proper AND gate? To find the answer look at the output of an
AND gate. There are two possible mutually exclusive outputs, a “1” or a “0”. One action cannot set an output high
or low. One output can set a bit high. It takes a different output to set a bit low. Hence, two separate outputs are
required.

1. ANDOUT

Couldn’t we just slip an action into the condition spot and do away with both transitions? Couldn’t we just make a
“thread” to do the work periodically? Yes, perhaps, but that would break the paradigm. Let’s make a non-machine
definition. The output of our conditional is in fact a Boolean itself. Why not define:

ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ;

Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine chain instead? There are no
backwards branches in this code. It has no Program Counter Capture (PCC) Loops. It runs straight through to
termination. It would work.

This, however, is another trick you should avoid. Again, why? This code does one of two actions every time the
scheduler runs. The actions take longer than the Boolean test and transfer to another thread. The system will run
slower, because the same outputs are being generated time after time, whether they have changed or not. While the
speed penalty in this example is exceedingly small, it could be considerable for larger state machines with more
detailed actions.

A deeper reason exists that reveals a great truth about state machines. Notice we have used a state machine to
simulate a hardware gate. What the AND gate outputs next is completely dependent on what the inputs are next. An
AND gate has an output which has no feedback. An AND gate has no memory. State machines can have memory.
Their future outputs depend on more than the inputs present. A state machine’s outputs can also depend on the
history of previous states. To appreciate this great difference between state machines and simple gates, we must first
look a bit further at some examples with multiple states and multiple transitions.

12. ANDGATE3

We are going to do another AND gate version, ANDGATE3, to illustrate this point about state machines having
multiple states. This version will have two transitions and two states. Up until now, our machines have had a single
state. Machines with a single state in general are not very versatile or interesting. You need to start thinking in terms
of machines with many states. This is a gentle introduction starting with a familiar problem. Another change is in
effect here. We have previously first written the code so as to make the program small in terms of lines. We used
this style to emphasize small program length. From now on, we are going to pretty print it so it reads as easily as
possible, instead.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED

MACHINE ANDGATE3
ON-MACHINE ANDGATE3
APPEND-STATE X0
APPEND-STATE X1

IN-STATE
X0
CONDITION
PA7 ON? PB7 ON? AND
CAUSES
YELLED ON
PBO ON
THEN-STATE
X1
TO-HAPPEN

IN-STATE

X1
CONDITION
PA7 OFF? PB7 OFF? OR
CAUSES
YELLED OFF
PBO OFF
THEN-STATE
X0
TO-HAPPEN

X0 SET-STATE INSTALL ANDGATE3
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3

Notic
23. MAKE A i
MACHINE ANDGATE3 MACHINE simila
r this
ON-MACHINE ANDGATE3 versio
APPEND-STATE X0 PA7 ON? PB7 ON? AND N of
APPEND-STATE X1 an
AND
YELLED ON
IN-STATE gate,
X0 PBO ON AND
CONDITION GATE
PA7 ON? PB7 ON? AND 3,1is
CAUSES to the
YELLED ON previ
PBO ON ous
THEN-STATE versio
X1 26. ADD A PA7 OFF? PB7 OFF? OR N
TO-HAPPEN TRANSITION AND
IN-STATE GATE
X1 YELLED OFF 2. The
CONDITION PBO OFF major
PA7 OFF? PB7 OFF? OR differ
CAUSES ence
YELLED OFF is that
PBO OFF 22. ADD A there
THEi\T“—) STATE TRANSITION are
TO-HAPPEN two
states
instea

d of one. We also added some “spice” to the action clauses, doing another output on PBO0, to show how actions can
be more complicated.

13. INTER-MACHINE COMMUNICATIONS

Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem. Now let’s say another
machine needs to know if both PA7 and PB7 are both high? If we had only one state, it would have to recalculate
the AND phrase, or read back what ANDGATE3 had written as outputs. Rereading written outputs is sometimes
dangerous, because there are hardware outputs which cannot be read back. If we use different states for each
different output, the state information itself stores which state is active. All an additional machine has to do to
discover the status of PA7 and PB7 AND’ed together is check the stored state information of ANDGATE3. To
accomplish this, simply query the state this way.

X0 IS-STATE?

A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This Boolean can be part of a
condition in another state. On the other hand:

X1 IS-STATE?

will return a TRUE value only if PA7 and PB7 are both high.

14. STATE MEMORY

So you see, a state machine’s current state is as much as an output as the outputs PB0O ON and YELLOW LED ON are,
less likely to have read back problems, and faster to check. The current state contains more information than other
outputs. It can also contain history. The current state is so versatile, in fact, it can store all the pertinent history
necessary to make any decision on past inputs and transitions. This is the deep truth about state machines we sought.

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION

The behavior of a finite-state machine is described as a sequence of events
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a
machine M has been receiving inputs signals and has been responding by
producing output signals. If now, at time t, we were to apply an input
signal x(?) to M, its response z(¢) would depend on x(2), as well as the past
inputs to M.

From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI

No similar solution is possible with short code threads. While variables can indeed be used in threads, and threads
can again reference those variable, using threads and variables leads to deeply nested IF ELSE THEN structures and
dreaded spaghetti code which often invades and complicates real time programs.

15. BOUNCELESS+

To put the application of state history to the test, let’s revisit our previous version of the machine BOUNCELESS.
Refer back to the code for transitions we used in BOUNCELESS.

STATE Y

IN-STATE IN-STATE

Y Y
CONDITION CONDITION

PA7 OFF? PB6 OFF?
CAUSES CAUSES

GRNLED OFF GRNLED ON
THEN-STATE THEN-STATE

Y Y
TO-HAPPEN TO-HAPPEN

This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green LED would go on and off
without noise or bounces between states. Notice however, PA7 and PB6 being low at the same time is not excluded
from the code. If both lines go low at the same time, the output of our machine is not well determined. One state
output will take precedence over the other, but which it will be cannot be determined from just looking at the
program. Whichever transition gets first service will win.

MACHINE BOUNCELESS+

ON-MACHINE BOUNCELESS+
APPEND-STATE WAITOFF

IN-STATE
WAITOFF GRNLED ON
CONDITION
PA7 OFF? PB7 ON? AND
CAUSES
GRNLED ON
THEN-STATE
WAITON
TO-HAPPEN

IN-STATE PB7 OFF? PA7 ON? AND
WAITON
CONDITION
PB7 OFF? PA7 ON? AND GRNLED OFF
CAUSES
GRNLED OFF
THEN-STATE
WAITOFF
TO-HAPPEN

Now consider how BOUNCELESS+ can be improved if the state machines history is integrated into the problem. In
order to have state history of any significance, however, we must have multiple states. As we did with our
ANDGATE3 let’s add one more state. The new states are WAITON and WAITOFF and run our two transitions
between the two states.

At first blush, the new machine looks more complicated, probably slower, but not significantly different from the
previous version. This is not true however. When the scheduler calls a machine, only the active state and its
transitions are considered. So in the previous version each time Y was executed, two conditionals on two transitions
were tested (assuming no true condition). In this machine, two conditionals on only one transition are tested. As a
result this machine runs slightly faster.

Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved than the original hardware
circuit shown!) It is truly bounceless, even if both switches are pressed at once. The first input detected down either
takes us to its state or inhibits the release of its state. The other input can dance all it wants, as long as the one first
down remains down. Only when the original input is released can a new input cause a change of state. In the rare
case where both signals occur at once, it is the history, the existing state, which determines the status of the machine.

STATE WAITOFF STATE WAITON
IN-STATE IN-STATE
WAITOFF WAITON
CONDITION CONDITION

PA7 OFF? PB7 ON? AND PB7 OFF? PA7 ON? AND

CAUSES CAUSES
GRNLED ON GRNLED OFF

THEN-STATE THEN-STATE
WAITON WAITOFF

TO-HAPPEN TO-HAPPEN

16. DELAYS

Let’s say we want to make a steady blinker out of the green LED. In a conventional procedural language, like
BASIC, C, FORTH, or Java, etc., you’d probably program a loop blinking the LED on then off. Between each loop
would be a delay of some kind, perhaps a subroutine you call which also spins in a loop wasting time.

Assembler BASIC C JAVA FORTH
LOOP1 LDX # O FOR I=1 TO N While (1) BEGIN
LOOP2 DEX GOSUB DELAY { delay(x); DELAY
BNE LOOP2
LDAA #1 LET PB=TRUE out (1,portAl); LED-ON
STAA PORTA
LDX # O
LOOP3 DEX GOSUB DELAY delay (x) ; DELAY
BNE LOOP3
LDAA #N Let PB=FALSE out (0,portAl); LED-OFF
STAA PORTA
JMP LOOP1 NEXT } AGAIN

Here’s where IsoMax™ will start to look different from any other language you’re likely to have ever seen before.
The idea behind Virtually Parallel Machine Architecture is constructing virtual machines, each a little “state
machine” in its own right. But this IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there
are no program loops, there are no backwards branches, there are no calls to time wasting delays allowed. Instead
we design machines with states. If we want a loop, we can make a state, then write a transition from that state that
returns to that state, and accomplish roughly the same thing. Also in IsoMax™, there are no delay loops.

The whole point of having a state is to allow “being in the state” to be “the delay”.

Breaking this restriction will break the functionality of IsoStructure, and the parallel machines will stop running in
parallel. If you’ve ever programmed in any other language, your hardest habit to break will be to get away from the
idea of looping in your program, and using the states and transitions to do the equivalent of looping for you.

A valid condition to leave a state might be a count down of passes through the state until a 0 count reached. Given
the periodicity of the scheduler calling the machine chain, and the initial value in the counter, this would make a
delay that didn’t “wait” in the conventional sense of backwards branching.

17. BLINKGRN

Now for an example of a delay using the count down to zero, we make a machine BLINKGRN. Reset your IsoPod™
so it is clean and clear of any programs, and then begin.

MACHINE BLINKGRN
ON-MACHINE BLINKGRN
APPEND-STATE BGl1
APPEND-STATE BG2

The action taken when we leave the state will be to turn the LED off and reinitialize the counter. The other half of
the problem in the other state we go to is just the reversed. We delay for a count, then turn the LED back on.

Since we’re going to count, we need two variables to work with. One contains the count, the other the initial value
we count down from. Let’s add a place for those variables now, and initialize them

-LOOPVAR <BUILDS HERE P, 1- DUP , , DOES>
P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;
100 -LOOPVAR CNT

IN-STATE

BG1
CONDITION

CNT
CAUSES

GRNLED OFF
THEN-STATE

BG2
TO-HAPPEN

IN-STATE
BG2
CONDITION
CNT
CAUSES
GRNLED ON
THEN-STATE
BG1
TO-HAPPEN

MACHINE BLINKGRN

ON-MACHINE BLINKGRN
APPEND-STATE BGl CNT
APPEND-STATE BG2

100 0 LOOPVAR CNT
GRNLED OFF

IN-STATE

BG1
CONDITION

CNT
CAUSES

GRNLED OFF
THEN-STATE

BG2
TO-HAPPEN CNT

IN-STATE
BG2
CONDITION
CNT
CAUSES
GRNLED ON
THEN-STATE
BG1
TO-HAPPEN

GRNLED ON

Above, the two transitions are “pretty printed” to make the four components of a transition stand out. As discussed
previously, as long as the structure is in this order it could just as well been run together on a single line (or so) per
transition, like this

IN-STATE BGl1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN
IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BGl TO-HAPPEN
Finally, the new machine must be installed and tested

BGl SET-STATE (INSTALL BLINKGRN
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN

The result of this program is that the green LED blinks on and off. Every time the scheduler runs the machine chain,
control is passed to whichever state BG1 or BG2 is active. The -LOOPVAR created word CNT is decremented and
tested. When the CNT reaches zero, it is reinitialized back to the originally set value, and passes a Boolean on to be
tested by the transition. If the Boolean is TRUE, the action is initiated.

The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is set to happen the next
control returns to this machine.

18. SPEED

You’ve seen how to write a machine that delays based on a counter. Let’s now try a slightly less useful machine just
to illustrate how fast the IsoPod™ can change state. First reset your machine to get rid of the existing machines.

19. ZIPGRN

MACHINE ZIPGRN
ON-MACHINE ZIPGRN
APPEND-STATE ZIPON
APPEND-STATE ZIPOFF

IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF
TO-HAPPEN

IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON
TO-HAPPEN

ZIPON SET-STATE

Now rather than install our new machine we’re going to test it by running it “by hand” interactively. Type in:

ZIPON SET-STATE
ZIPGRN

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to termination, through one
state transition, and stops. Run it again. Type:

ZIPGRN

Once again, the green LED should change. This time the machine starts in the state with the LED off. The always
TRUE condition makes the transition’s action happen and the next state is set to again, back to the original state. As
many times as you run it, the machine will change the green LED back and forth.

Now with the machine program and tested, we’re ready to install the machine into the machine chain. The phrase to
install a machine is :

EVERY n CYCLES SCHEDULE-RUNS word
So for our single machine we’d say:

ZIPON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN

Now if you look at your green LED, you’ll see it is slightly dimmed.

That’s because it is being turned off half the time, and is on half the time. But it is happening so fast you can’t even
see it.

20. REDYEL

Let’s do another of the same kind. This time lets do the red and yellow LED, and have them toggle, only one on at a
time. Here we go:

MACHINE REDYEL
ON-MACHINE REDYEL

APPEND-STATE REDON
APPEND-STATE YELON

IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE
YELON TO-HAPPEN

IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE
REDON TO-HAPPEN

Notice we have more things happening in the action this time. One LED is turned on and one off in the action. You
can have multiple instructions in an action.

Test it. Type:

REDON SET-STATE
REDYEL
REDYEL
REDYEL
REDYEL

See the red and yellow LED’s trade back and forth from on to off and vice versa.

All this time, the ZI PGRN machine has been running in the background, because it is in the installed machine chain.
Let’s replace the installed machine chain with another. So we define a new machine chain with both our virtual
machines in it, and install it.

MACHINE-CHAIN CHN2
ZIPGRN
REDYEL
END-MACHINE-CHAIN

REDON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2

With the new machine chain installed, all three LED’s look slightly dimmed.

Again, they are being turned on and off a thousand times a second. But to your eye, you can’t see the individual
transitions. Both our virtual machines are running in virtual parallel, and we still don’t see any slow down in the
interactive nature of the IsoPod™.

So what was the point of making these two machines? Well, these two machines are running faster than the previous
ones. The previous ones were installed with 50,000 cycles between runs. That gave a scan-loop repetition of 100
times a second. Fine for many mechanical issues, on the edge of being slow for electronic interfaces. These last
examples were installed with 5,000 cycles between runs. The scan-loop repetition was 1000 times a second. Fine for
many electronic interfaces, that is fast enough. Now let’s change the timing value. Redo the installation with the
SCHEDULE-RUNS command.

The scan-loop repetition is 10,000 times a second.
EVERY 500 CYCLES SCHEDULE-RUNS CHN2
Let’s see if we can press our luck.

EVERY 100 CYCLES SCHEDULE-RUNS CHNZ2

Even running two machines 50,000 times a second in high-level language, there is still time left over to run the
foreground routine. This means, two separate tasks are being started and running a series of high-level instructions
50,000 times a second. This shows the IsoPod™ is running more than four hundred thousand high-level instructions
per second. The IsoPod™ performance is unparalleled in any small computer available today.

	ISOMAX PROGRAMMING
	QUICK OVERVIEW
	THREE MACHINES
	REDTRIGGER
	ANDGATE1
	BOUNCELESS

	SYNTAX AND FORMATTING
	MULTIPLE STATES/MULTIPLE TRANSITIONS
	ANDGATE2
	
	
	
	TRANSITION COMPARISON

	ANDOUT
	ANDGATE3

	INTER-MACHINE COMMUNICATIONS
	STATE MEMORY
	BOUNCELESS+

	DELAYS
	BLINKGRN

	SPEED
	ZIPGRN
	REDYEL

