
1. ISOMAX PROGRAMMING   
 
IsoMax is a programming language based on Finite State Machine (FSM) concepts applied to software, with a 
procedural language (derived from Forth) underneath it. The closest description to the FSM construction type is a 
“One-Hot” Mealy type of Timer Augmented Finite State Machines. More on these concepts will come later.  
 

2. QUICK OVERVIEW  
 
What is IsoMax™? IsoMax™ is a real time operating system / language.  
 
How do you program in IsoMax™? You create state machines that can run in a virtually parallel architecture.  
 

Step Programming Action Syntax 
1 Name a state machine 

 

 
 

MACHINE <name> 

2 Select this machine 
 

ON-MACHINE <name> 

3 Name any states appended on the machine 
 

 
 

APPEND-STATE <name> 
APPEND-STATE <name> 
… 

4 Describe transitions from states to states 
 

IN-STATE  
  <state> 
CONDITION 
  <Boolean> 
CAUSES 
  <action> 
THEN-STATE 
  <state> 
TO-HAPPEN 

5 Test and Install {as required} 
 
What do you have to write to make a state machine in IsoMax™? You give a machine a name, and then tell the 
system that’s the name you want to work on. You append any number of states to the machine. You describe any 
number of transitions between states. Then you test the machine and when satisfied, install it into the machine chain.  
 
What is a transition? A transition is how a state machine changes states. What’s in a transition? A transition has four 
components; 1) which state it starts in, 2) the condition necessary to leave, 3) the action to take when the condition 
comes true, and 4) the state to go to next time. Why are transitions so verbose? The structure makes the transitions 
easy to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-STATE and TO-
HAPPEN are like the five brackets around a table of four things.  
 
 



IN-STATE 
\ 

CONDITION 
/\ 

CAUSES 
/\ 

THEN-STATE 
/\ 

TO-HAPPEN 
/ 

<from state> <Boolean> <action> <to state> 
 
In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE and TO-
HAPPEN are always there (with some possible options to be set out later). The “meat slices” between the “slices of 
bread” are the hearty stuffing of the description. You will fill in those portions to your own needs and liking. The 
language provides “the bread” (with only a few options to be discussed later). 
 
So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states appended. The transitions are 
laid out in a pattern, with certain words surrounding others. Procedural parts are inserted in the transitions between 
the standard clauses.  
 
The syntax is very loose compared to some languages. What is important is the order or sequence these words come 
in. Whether they occur on one line or many lines, with one space or many spaces between them doesn’t matter. Only 
the order is important.  
 

3. THREE MACHINES 
 
Now let’s take a first step at exploring IsoMax™ the language by looking at some very simple examples. We’ll 
explore the language with what we’ve just tested earlier, the LED words. We’ll add some machines that will use the 
LED’s as outputs, so we can visually “see” how we’re coming along.  
 

4. REDTRIGGER  
 
First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s presented first without 
detailed explanation, entered and tested. Then we will explain the language to create the machine step by step  
 
 
( THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.  
( IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE 
 
HEX 
: OFF?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 0= 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=  
  THEN 
; 
DECIMAL 
 
MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 
There you have it, a complete real time program in two lines of IsoMax™, and one additional line to install it. A 
useful virtual machine is made here with one state and one transition.  



 
This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-RETRIGGERABLE ONE-
SHOT TIMER: Produces a preset timed output signal on the occurrence of an input signal. The timed output 
response may begin on either the leading edge or the trailing edge of the input signal. The preset time (in this case: 
infinity) is independent of the duration of the input signal.) For an example of a hardware non-retriggerable one-
shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf. 
 

 
 

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes. PA7 normally has a pull up 
resistor that will keep it “on”, or “high” if nothing is attached. So attaching push button from PA7 to ground, or even 
hooking a jumper test lead to ground and pushing the other end into contact with the wire lead in PA7, will cause 
PA7 to go “off” or “low”, and the REDLED will come on.  
 

 
(In these examples, any port line that can be an input could be used. PA7 here, PB7 and PB6 later, were chosen 
because they are at the bottom of J1 and the easiest for you to access.) 
 
Now if you want, type these lines shown above in. (If you are reading this manual electronically, you should be able 
to highlight the text on screen and copy the text to the clipboard with Cntl-C. Then you may be able to paste into 
your terminal program. On MaxTerm, the command to down load the clipboard is Alt-V. On other windows 
programs it might be Cntl-V.) 
 
Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to have the LED’s on, unless 
programmed otherwise by the user. So to be useful we must reset this one-shot. Enter:  
 
REDLED OFF  

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf


 
Now install the REDTRIGGER by installing it in the (now empty) machine chain. 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 

 
 

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove the ground or release the 
push button. The red LED does not go back off. The program is still running, even though all visible changes end at 
that point. To see that, we’ll need to manually reset the LED off so we can see something happen again. Enter. 
 
REDLED OFF  
 
If we ground PA7 again, the red LED will come back on, so even though we are still fully interactive with the 
IsoPod™ able to type commands like REDLED OFF in manually, the REDTRIGGER machine is running in the 
background. 
 
Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take the time explain the 
concepts of this new language we skipped over previously.  
 
Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the elements of the program relate 
to a state machine diagram. Usually you start to learn a language by learning the syntax, or how and where elements 
of the program must be placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on any 
line with any amount of white space between them as long as the sequence remains the same. So in the pretty 
printing, most things are put on a separate line and have spaces in front of them just to make the relationships easy to 
see. Beyond the basic language syntax, a few words have a further syntax associated to them. They must have new 
names on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE require a 
name following. You will see that they do. More on syntax will come later. 
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PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE REDTRIGGER  
 
  ON-MACHINE REDTRIGGER  
    APPEND-STATE RT 
 
IN-ST
  RT 

ATE 

CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-S
  RT  

TATE  

TO-HAPPEN 
 
 

8. TO STATE 

6. BOOLEAN 

5. ACTION 

4. MAKE A 
MACHINE 

3. ADD A 
TRANSITION 

7. FROM STATE 

2. ADD A 
STATE 

PA7 OFF? 

REDLED ON 

1. RT 



making a new virtual machine, named REDTRIGGER. (Any group of characters without a space or a backspace or 
return will do for a name. You can be very creative. Use up to 32 characters. Here the syntax is MACHINE followed 
by the chosen name.) 
 
MACHINE REDTRIGGER 
 
That’s it. We now have a new machine. This particular new machine is named REDTRIGGER. It doesn’t do 
anything yet, but it is part of the language, a piece of our program. 
 
For our second program line, we’ll identify REDTRIGGER as the machine we want to append things to. The syntax 
to do this is to say ON-MACHINE and the name of the machine we want to work on, which we named 
REDTRIGGER so the second program line looks like this: 
 
  ON-MACHINE REDTRIGGER 
  
(Right now, we only have one machine installed. We could have skipped this second line. Since there could be 
several machines already in the IsoPod™ at the moment, it is good policy to be explicit. Always use this line before 
appending states. When you have several machines defined, and you want to add a state or transition to one of them, 
you will need that line to pick the machine being appended to. Otherwise, the new state or transition will be 
appended to the last machine worked on.) 
 
All right. We add the machine to the language. We have told the language the name of the machine to add states to. 
Now we’ll add a state with a name. The syntax to do this is to say APPEND-STATE followed by another made-up 
name of our own. Here we add one state RT like this: 
 
    APPEND-STATE RT 
 
States are the fundamental parts of our virtual machine. States help us factor our program down into the important 
parts. A state is a place where the computer’s outputs are stable, or static. Said another way, a state is place where 
the computer waits. Since all real time programs have places where they wait, we can use the waits to allow other 
programs to have other processes. There is really nothing for a computer to do while its outputs are stable, except to 
check if it is time to change the outputs.  
 
(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the computer to waste time in a 
wait, no backwards branches allowed. It allows a check for the need to leave the state once per scheduled time, per 
machine.) 
 
To review, we’ve designed a machine and a sub component state. Now we can set up something like a loop, or 
jump, where we go out from the static state when required to do some processing and come back again to a static 
wait state.  
 
The rules for changing states along with the actions to do if the rule is met are called transitions. A transition 
contains the name of the state the rule applies to, the rules called the condition, what to do called the action, and 
“where to go” to get into another state. (We have only one state in this example, so the last part is easy. There is no 
choice. We go back into the same state. In machines with more than one state, it is obviously important to have this 
final piece.) 
 
There’s really no point in have a state in a machine without a transition into or out of it. If there is no transition into 
or out of a state, it is like designing a wait that cannot start, cannot end, and cannot do anything else either.  
 
On the other hand, a state that has no transition into it, but does have one out of it, might be an “initial state” or a 
“beginning state”. A state that has a transition into it, but doesn’t have one out of it, might be a “final state” or an 
“ending state”. However, most states will have at least one (or more) transition entering the state and one (or more) 
transition leaving the state. In our example, we have one transition that leaves the state, and one that comes into the 
state. It just happens to be the same one. 



 
Together a condition and action makes up a transition, and transitions go from one specific state to another specific 
state. So there are four pieces necessary to describe a transition; 1) The state the machine starts in. 2) the condition 
to leave that state 3) the action taken between states and 4) the new state the machine goes to.  
 
Looking at the text box with the graphic in it, we can see the transitions four elements clearly labeled. In the text 
version, these four elements are printed in bold. In the equivalent graphic they are labeled as “FROM STATE”, 
“BOOLEAN”, “ACTION” and “TO STATE”.  
 
The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7 OFF?. The “ACTION” is 
REDLED ON. The “TO STATE” is again RT. 
 
So to complete our state machine program, we must define the transition we need. The syntax to make a transition, 
then, is to fill in the blanks between this form: IN-STATE <name> CONDITION <Boolean> CAUSES 
<action> THEN-STATE <name> TO-HAPPEN. 
 
Whether the transition is written on one line as it was at first: 
 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 
  
Or pretty printed on several lines as it was in the text box: 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-STATE  
  RT  
TO-HAPPEN 
 
The effect is the same. The five bordering words are there, and the four user supplied states, condition and action are 
in the same order and either way do the same thing. 
 
After the transition is added to the program, the program can be tested and 
installed as shown above. 
 
State machine diagrams (the graphic above being an example) are nothing new. They 
are widely used to design hardware. They come with a few minor style 
variations, mostly related to how the outputs are done. But they are all very 
similar. The figure to the right is a hardware Quadrature design with four states. 
 
While FSM diagrams are also widely known in programming as an abstract 
computational element, there are few instances where they are used to design software. Usually, the tools for writing 
software in state machines are very hard to follow. The programming style doesn’t seem to resemble the state 
machine design, and is often a slow, table-driven “read, process all inputs, computation and output” scheme. 
 
IsoMax™ technology has overcome this barrier, and gives you the ability to design software that looks “like” 
hardware and runs “like” hardware (not quite as fast of course, but in the style, or thought process, or “paradigm” of 
hardware) and is extremely efficient. The Virtually Parallel Machine Architecture lets you design many little, 
hardware-like, machines, rather than one megalith software program that lumbers through layer after layer of if-then 
statements. (You might want to refer to the IsoMax Reference Manual to understand the language and its origins.) 
 



5. ANDGATE1 
 
Let’s do another quick little machine and install both machines so you can see them running concurrently. 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
 
HEX 
: ON?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT 
  THEN 
; 
DECIMAL 
 
MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X 
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE X TO-
HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE1 
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN 
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1 
 
There you have it, another complete real time program in three lines of IsoMax™, and one additional line to install 
it. A useful virtual machine is made here with one state and one transition. This virtual machine acts (almost) like an 
AND gate made in hardware.  
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf 
 

http://www.philipslogic.com/products/hc/pdf/74hc08.pdf


  
 
Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of the time). So by attaching 
push buttons to PA7 and PB7 simulating micro switches this little program could be used like an interlock system 
detecting “cover closed”. 
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PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE1  
 
  ON-MACHINE ANDGATE1  
    APPEND-STATE X 
 
IN-STATE 
  X 
CONDITION 

FF   YELLED O
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-
  X  

STATE  

TO-HAPPEN 

11. MAKE A 
MACHINE 

10. ADD A 
TRANSITION 

9. ADD A 
STATE 

YELLED OFF 
PA7 ON? 

PB7 ON? AND 

YELLED ON 

X 



is a bit contrived. When you try to make a state machine too simple, you wind up stretching 
things you shouldn’t. This example could have acted exactly like an AND gate if two transitions 
were used, rather than just one. Instead, a “trick” was used to turn the LED off every time in the 
condition, then turn it on only when the condition was true. So a noise spike is generated a real 
“and” gate doesn’t have. The trick made the machine simpler, it has half the transitions, but it is 
less functional. Later we’ll revisit this machine in detail to improve it.) 
 
Notice both machines share an input, but are using the opposite sense on that input. ANDGATE1 looks for PA7 to be 
ON, or HIGH. The internal pull up will normally make PA7 high, as long as it is programmed for a pull up and 
nothing external pulls it down. 
 
Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet the two machines 
coexist peacefully on the same processor, even sharing the same inputs in different ways. 
 
To see these machines running enter the new code, if you are still running REDTRIGGER, reset (toggle the DTR line 
on the terminal, for instance, Alt-T twice in MaxTerm or cycle power) and download the whole of both programs. 
 
Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now causes the same result 
for REDTRIGGER, the red LED goes on, but the opposite effect for the yellow LED, which goes off while PA7 is 
grounded. Releasing PA7 turns the yellow LED back on, but the red LED remains on.  
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no effect on the red LED, but 
turns off the yellow LED while grounded. Grounding both PA7 and PB7 at the same time also turns off the yellow 
LED, and turns on the red LED if not yet set. 
 
 

 
 
Notice how the tightly the two machines are intertwined. Perhaps you can imagine how very simple machines with 
combinatory logic and sharing inputs and feeding back outputs can quickly start showing some complex behaviors. 
Let’s add some more complexity with another machine sharing the PA7 input. 
 

6. BOUNCELESS 
 
We have another quick example of a little more complex machine, one with one state and two transitions. 
 
MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y 
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN 
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN 
 
Y SET-STATE ( INSTALL BOUNCELESS 
 
MACHINE-CHAIN 3EASY 
REDTRIGGER 
ANDGATE 



BOUNCELESS 
END-MACHINE-CHAIN 
 
EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY 
 
There you have yet another complete design, initialization and installation of a virtual machine in four lines of 
IsoMax™ code.  
 
Another name for the machine in this program is “a bounceless switch”. 
 

 

 
 
Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge output signals. They do this 
by toggling state when an input first becomes active, and remaining in that state. If you are familiar with hardware, 
you might recognize the two gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable 
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input is grounded, and will not 
flip back until the other input is grounded. 
 
By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off with the press of the PA7 
button, or off to on with the press of the PB6. The PA7 button acts as a reset switch, and the PB6 acts as a set 
switch.  
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PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS  
 
ON-MACHINE BOUNCE

    APPEND-STATE Y 
LESS  

 
IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 
 
IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN 

15. MAKE A 
MACHINE 

14. ADD A 
TRANSITION 

13. ADD A 
TRANSITION 

GRNLED ON 

PB6 OFF? 

PA7 OFF? 

GRNLED OFF 

Y 

12. ADD A 
STATE 

  



Here we created one machine, gave it one state, and appended two transitions to that state. Then we installed the 
finished machine along with the two previous machines. All run in the background, freeing us to program more
virtual machines that can also run in parallel, or interactively monitor existing machines from the foregr

 
ound. 

 

 
 
Notice all three virtual hardware circuits are installed at the same time, they operate virtually in parallel, and the 
IsoPod™ is still not visibly taxed by having these machines run in parallel. Further, all three machines share one 
input, so their behavior is strongly linked. 
 

7. SYNTAX AND FORMATTING 
 
Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax again, you’ll need to remember 
the following. Everything in IsoMax™ is a word or a number. Words and numbers are separated by spaces (or 
returns).  
 
Some words have a little syntax of their own. The most common cases for such words are those that require a name 
to follow them. When you add a new name, you can use any combinations of characters or letters except (obviously) 
spaces and backspaces, and carriage returns. So, when it comes to pretty formatting, you can put as much on one 
line as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long as you keep your words 
whole. However, some words will require a name to follow them, so those names will have to be on the same line. 
 
In the examples you will see white space (blanks) used to add some formatting to the source text. MACHINE starts at 
the left, and is followed by the name of the new machine being added to the language. ON-MACHNE is indented 
right by two spaces. APPEND-STATE X is indented two additional spaces. This is the suggested, but not 
mandatory, offset to achieve pretty formatting. Use two spaces to indent for levels. The transitions are similarly laid 
out, where the required words are positioned at the left, and the user programming is stepped in two spaces. 
 
 

8. MULTIPLE STATES/MULTIPLE TRANSITIONS 
 
Before we leave the previous “Three Machines”, let’s review the AND machine again, since it had a little trick in it 
to keep it simple, just one state and one transition. The trick does simplify things, but goes too far, and causes a 
glitch in the output. To make an AND gate which is just like the hardware AND we need at least two transitions. 
The previous example, BOUNCELESS was the first state machine with more than one transition. We’ll follow this 
precedent and redo ANDGATE2 with two transitions.  

9. ANDGATE2 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM  
 



MACHINE ANDGATE2 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 
IN-STATE  
  X 
CONDITION 
  PA7 ON? 
  PB7 ON? AND 
CAUSES 
  YELLED ON 
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE  
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF 
THEN-STATE 
  X 
TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE2 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2 
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MACHINE ANDGATE2  
 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
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16.    X 



Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice there is an “action” 
included in the ANDGATE1 condition clause. See the YELLED OFF statement (highlighted in bold) in ANDGAT
not present in ANDGATE2? Further notice the same phrase YELLED OF

E1, 
F appears in the second transition of 

NDGATE2 as the object action of that transition.  
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The way this trick worked was by using an action in the condition clause, every time the scheduler ran the chain o
machines, it would execute the conditions clauses of all transitions on any active state. Only if the condition was 
true, did any action of a transition get executed. Consequently, the trick used in ANDGATE1 caused the action of the 
second transition to happen when conditionals (only) should be running. This meant it was as if the second
of ANDGATE2 happened every time. Then if the condition found the action to be a “wrong” output in the 
conditional, the action of ANDGATE1 ran and corrected 

f 

 transition 

the situation. The brief time the processor took to correct the 
rong output was the “glitch” in ANDGATE1’s output. 

nd. The programmer determines the rate, so has control of the latency, to 
e limits of the CPU’s processing power. 

NDITION and CAUSES phrase is not prohibited, but is considered 
ot appropriate in the paradigm of Isostructure.  

ansition. Any other action there slows the machine down, being executed every time the machine chain runs.  

 no output. They run the condition only to 
heck if it is time to stop the wait, time to take an action in a transition.  

 
 in the conditional lengthens the 

me it takes to operate waiting machines, and steals time from other transitions.  

e output can set a bit high. It takes a different output to set a bit low. Hence, two separate outputs are 
quired.  

 

w
 
Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as most modern versions of 
AND gates implemented in random logic on silicon. The latency of the outputs of ANDGATE2 are determined by 
how many times ANDGATE2 runs per seco
th
 
The original ANDGATE1 serves as an example of what not to do, yet also just how flexible you can be with the 
language model. Using an action between the CO
n
 
An algorithm flowing to determine a single Boolean value should be the only thing in the condition clause of a 
tr
 
Most of the time, states wait. A state is meant to take no action, and have
c
 
The actions we have taken in these simple machines if very short. More complex machines can have very complex
actions, which should only be run when it is absolutely necessary. Putting actions
ti
 
Why was it necessary to have two transitions to do a proper AND gate? To find the answer look at the output of an 
AND gate. There are two possible mutually exclusive outputs, a “1” or a “0”. One action cannot set an output high 
or low. On
re



11. ANDOUT 

E3 

 
Couldn’t we just slip an action into the condition spot and do away with both transitions? Couldn’t we just make a 
“thread” to do the work periodically? Yes, perhaps, but that would break the paradigm. Let’s make a non-machine 
definition. The output of our conditional is in fact a Boolean itself. Why not define: 
 
: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ; 
 
Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine chain instead? There are no 
backwards branches in this code. It has no Program Counter Capture (PCC) Loops. It runs straight through to 
termination. It would work. 
 
This, however, is another trick you should avoid. Again, why? This code does one of two actions every time the 
scheduler runs. The actions take longer than the Boolean test and transfer to another thread. The system will run 
slower, because the same outputs are being generated time after time, whether they have changed or not. While the 
speed penalty in this example is exceedingly small, it could be considerable for larger state machines with more 
detailed actions. 
 
A deeper reason exists that reveals a great truth about state machines. Notice we have used a state machine to 
simulate a hardware gate. What the AND gate outputs next is completely dependent on what the inputs are next. An 
AND gate has an output which has no feedback. An AND gate has no memory. State machines can have memory. 
Their future outputs depend on more than the inputs present. A state machine’s outputs can also depend on the 
history of previous states. To appreciate this great difference between state machines and simple gates, we must first 
look a bit further at some examples with multiple states and multiple transitions. 
 

12. ANDGAT
 
We are going to do another AND gate version, ANDGATE3, to illustrate this point about state machines having 
multiple states. This version will have two transitions and two states. Up until now, our machines have had a single 
state. Machines with a single state in general are not very versatile or interesting. You need to start thinking in terms 
of machines with many states. This is a gentle introduction starting with a familiar problem. Another change is in 
effect here. We have previously first written the code so as to make the program small in terms of lines. We used 
this style to emphasize small program length. From now on, we are going to pretty print it so it reads as easily as 
possible, instead.  
 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED  
 
MACHINE ANDGATE3 
  ON-MACHINE ANDGATE3 
    APPEND-STATE X0 
    APPEND-STATE X1 
 
IN-STATE  
  X0 
CONDITION 
  PA7 ON? PB7 ON? AND 
CAUSES 
  YELLED ON 
  PB0 ON 
THEN-STATE 
  X1 
TO-HAPPEN 
 
IN-STATE  



  X1 
CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 
  YELLED OFF 
  PB0 OFF 
THEN-STATE 
  X0 
TO-HAPPEN 
 
X0 SET-STATE ( INSTALL ANDGATE3 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3 
 

 
Notic
e how
simila
r this 
versio
n of 
an 
AND 
gate, 
AND
GATE
3, is 
to th
previ
ous
versio
n, 
AND
GATE
2. Th
major 
differ
ence 
is that 
there 
are 
two 
states 
instea

d of one. We also added some “spice” to the action clauses, doing another output on PB0, to show how actions can 
be more complicated. 

 

e 

 

e 

S 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE3  
 
  ON-MACHINE ANDGATE3 
    APPEND-STATE  X0
    APPEND-STATE X1 
 

 
IN-STATE 
  X0  
CONDITION  
  PA7 ON? PB7 ON? AND 
CAUSES  

ON    YELLED 
  PB0 ON 
THEN-S
  X1  

TATE 

TO-HAPPEN 
 
IN-ST
  X1 

ATE 

CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 

FF   YELLED O
  PB0 OFF 
THEN-ST
   X0  

ATE 

TO-HAPPEN 

26. ADD A 
TRANSITION 

YELLED OFF 
PB0 OFF  

PA7 OFF? PB7 OFF? OR 

25. X1 

24.  

23. MAKE A 
MACHINE 

22. ADD A 
TRANSITION 

PA7 ON? PB7 ON? AND 

YELLED ON  
PB0 ON 

21. X0 

 
 

13. INTER-MACHINE COMMUNICATION
 
Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem. Now let’s say another 
machine needs to know if both PA7 and PB7 are both high? If we had only one state, it would have to recalculate 
the AND phrase, or read back what ANDGATE3 had written as outputs. Rereading written outputs is sometimes 
dangerous, because there are hardware outputs which cannot be read back. If we use different states for each 
different output, the state information itself stores which state is active. All an additional machine has to do to 
discover the status of PA7 and PB7 AND’ed together is check the stored state information of ANDGATE3. To 
accomplish this, simply query the state this way. 



 
X0 IS-STATE?  
 
A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This Boolean can be part of a 
condition in another state. On the other hand: 
 
X1 IS-STATE?  
 
will return a TRUE value only if PA7 and PB7 are both high.  
 

14. STATE MEMORY 
 
So you see, a state machine’s current state is as much as an output as the outputs PB0 ON and YELLOW LED ON are, 
less likely to have read back problems, and faster to check. The current state contains more information than other 
outputs. It can also contain history. The current state is so versatile, in fact, it can store all the pertinent history 
necessary to make any decision on past inputs and transitions. This is the deep truth about state machines we sought.  
 
 

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION 
 
The behavior of a finite-state machine is described as a sequence of events 
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a 
machine M has been receiving inputs signals and has been responding by 
producing output signals. If now, at time t, we were to apply an input 
signal x(t) to M, its response z(t) would depend on x(t), as well as the past 
inputs to M.  
 
From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI 

 
No similar solution is possible with short code threads. While variables can indeed be used in threads, and threads 
can again reference those variable, using threads and variables leads to deeply nested IF ELSE THEN structures and 
dreaded spaghetti code which often invades and complicates real time programs. 

15. BOUNCELESS+ 
 
To put the application of state history to the test, let’s revisit our previous version of the machine BOUNCELESS. 
Refer back to the code for transitions we used in BOUNCELESS.  
 

 
STATE Y 

IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 

IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN 

 



This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green LED would go on and off 
without noise or bounces between states. Notice however, PA7 and PB6 being low at the same time is not excluded 
from the code. If both lines go low at the same time, the output of our machine is not well determined. One state 
output will take precedence over the other, but which it will be cannot be determined from just looking at the 
program. Whichever transition gets first service will win. 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS+  
 
  ON-MACHINE BOUNCELESS+ 
    APPEND-STATE WAITOFF 
    APPEND-STATE WAITON 
 

 
IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE 
  WAITON  
TO-HAPPEN 
 
IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

 PA7 OFF? PB7 ON? AND 

WAITOFF 

 

  PB7 

 
Now consider how BOUNCELESS+ can be improved if the state machi
order to have state history of any significance, however, we must have 
ANDGATE3 let’s add one more state. The new states are WAITON and W
between the two states.  
At first blush, the new machine looks more complicated, probably slow
previous version. This is not true however. When the scheduler calls a m
transitions are considered. So in the previous version each time Y was e
were tested (assuming no true condition). In this machine, two conditio
result this machine runs slightly faster. 
 
Further, the new BOUNCELESS+ machine is better behaved. (In fact, it
circuit shown!) It is truly bounceless, even if both switches are pressed 
takes us to its state or inhibits the release of its state. The other input ca
down remains down. Only when the original input is released can a new
case where both signals occur at once, it is the history, the existing state
 

 
STATE WAITOFF STA

IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 

IN-STATE 
  WAITON 
CONDITION
  PB7 OFF
GRNLED ON
 

 

WAITON 

OFF? PA7 ON? AND 
GRNLED OFF 

 

nes history is integrated into the problem. In 
multiple states. As we did with our 
AITOFF and run our two transitions 

er, but not significantly different from the 
achine, only the active state and its 

xecuted, two conditionals on two transitions 
nals on only one transition are tested. As a 

 is better behaved than the original hardware 
at once. The first input detected down either 
n dance all it wants, as long as the one first 
 input cause a change of state. In the rare 
, which determines the status of the machine. 

 
TE WAITON 

 
? PA7 ON? AND 



CAUSES  
  GRNLED ON  
THEN-STATE
  WAITON  

 

TO-HAPPEN 

CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

 
 

16. DELAYS 
 
Let’s say we want to make a steady blinker out of the green LED. In a conventional procedural language, like 
BASIC, C, FORTH, or Java, etc., you’d probably program a loop blinking the LED on then off. Between each loop 
would be a delay of some kind, perhaps a subroutine you call which also spins in a loop wasting time.  
 

Assembler  BASIC  C  JAVA FORTH  
LOOP1 LDX # 0 FOR I=1 TO N While ( 1 ) BEGIN 
LOOP2 DEX 
      BNE LOOP2 

GOSUB DELAY { delay(x);   DELAY 

      LDAA #1 
      STAA PORTA 
      LDX # 0 

LET PB=TRUE   out(1,portA1);   LED-ON 

LOOP3 DEX 
      BNE LOOP3 

GOSUB DELAY   delay(x);   DELAY 

      LDAA #N 
      STAA PORTA 

Let PB=FALSE   out(0,portA1);   LED-OFF 

      JMP LOOP1 NEXT } AGAIN 
 
Here’s where IsoMax™ will start to look different from any other language you’re likely to have ever seen before. 
The idea behind Virtually Parallel Machine Architecture is constructing virtual machines, each a little “state 
machine” in its own right. But this IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there 
are no program loops, there are no backwards branches, there are no calls to time wasting delays allowed. Instead 
we design machines with states. If we want a loop, we can make a state, then write a transition from that state that 
returns to that state, and accomplish roughly the same thing. Also in IsoMax™, there are no delay loops.  
 
The whole point of having a state is to allow “being in the state” to be “the delay”.  
 
Breaking this restriction will break the functionality of IsoStructure, and the parallel machines will stop running in 
parallel. If you’ve ever programmed in any other language, your hardest habit to break will be to get away from the 
idea of looping in your program, and using the states and transitions to do the equivalent of looping for you. 
 
A valid condition to leave a state might be a count down of passes through the state until a 0 count reached. Given 
the periodicity of the scheduler calling the machine chain, and the initial value in the counter, this would make a 
delay that didn’t “wait” in the conventional sense of backwards branching.  
 

17. BLINKGRN 
 
Now for an example of a delay using the count down to zero, we make a machine BLINKGRN. Reset your IsoPod™ 
so it is clean and clear of any programs, and then begin. 
 
MACHINE BLINKGRN 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 
 



The action taken when we leave the state will be to turn the LED off and reinitialize the counter. The other half of 
the problem in the other state we go to is just the reversed. We delay for a count, then turn the LED back on.  
 
Since we’re going to count, we need two variables to work with. One contains the count, the other the initial value 
we count down from. Let’s add a place for those variables now, and initialize them 
 
: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES> 
  P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;  
100 -LOOPVAR CNT 
 
 
IN-STATE 
   BG1  
CONDITION  
   CNT 
CAUSES  
   GRNLED OFF  
THEN-STATE 
   BG2  
TO-HAPPEN 
 
IN-STATE 
   BG2 
CONDITION 
   CNT 
CAUSES 
   GRNLED ON  
THEN-STATE 
   BG1  
TO-HAPPEN 
 



PROGRAM TEXT      
 
MACHINE BLINKGRN  
 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 
 
100 0 LOOPVAR CNT   
 
IN-STATE 
  BG1  
CONDITION  
  CNT  
CAUSES  
  GRNLED OFF  
THEN-STATE 
  BG2  
TO-HAPPEN 
 
IN-STATE 
  BG2 
CONDITION 
  CNT 
CAUSES 
  GRNLED ON  
THEN-STATE 
  BG1  
TO-HAPPEN 

 
Above, the two transitions are “pretty printed” to m
previously, as long as the structure is in this order 
transition, like this 
 
IN-STATE BG1 CONDITION CNT CAUSES 
 
IN-STATE BG2 CONDITION CNT CAUSES 
 
Finally, the new machine must be installed and tes
 
BG1 SET-STATE ( INSTALL BLINKGRN 
EVERY 50000 CYCLES SCHEDULE-RUNS B
 
The result of this program is that the green LED bl
control is passed to whichever state BG1 or BG2 is 
tested. When the CNT reaches zero, it is reinitialize
tested by the transition. If the Boolean is TRUE, the
 

   EQUIVALENT GRAPHIC 

 CNT 

GRNLED ON  
 

BG1 

GRNLED OFF 
 

  CNT 

BG2 

ake the four components of a transition stand out. As discussed 
it could just as well been run together on a single line (or so) per 

GRNLED OFF THEN-STATE BG2 TO-HAPPEN 

GRNLED ON THEN-STATE BG1 TO-HAPPEN 

ted 

LINKGRN 

inks on and off. Every time the scheduler runs the machine chain, 
active. The -LOOPVAR created word CNT is decremented and 
d back to the originally set value, and passes a Boolean on to be 
 action is initiated.  



 
 
The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is set to happen the next 
control returns to this machine. 
 

18. SPEED 

N 

 
You’ve seen how to write a machine that delays based on a counter. Let’s now try a slightly less useful machine just 
to illustrate how fast the IsoPod™ can change state. First reset your machine to get rid of the existing machines. 
 

19. ZIPGR
 
MACHINE ZIPGRN 
 
  ON-MACHINE ZIPGRN 
    APPEND-STATE ZIPON 
    APPEND-STATE ZIPOFF 
 
IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF  
TO-HAPPEN 
 
IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON  
TO-HAPPEN 
 
ZIPON SET-STATE  
 
Now rather than install our new machine we’re going to test it by running it “by hand” interactively. Type in: 
 
ZIPON SET-STATE 
ZIPGRN 
 

 
 



ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to termination, through one 
state transition, and stops. Run it again. Type:  
 
ZIPGRN 
                                            
 
 

 
 
Once again, the green LED should change. This time the machine starts in the state with the LED off. The always 
TRUE condition makes the transition’s action happen and the next state is set to again, back to the original state. As 
many times as you run it, the machine will change the green LED back and forth.  
 
Now with the machine program and tested, we’re ready to install the machine into the machine chain. The phrase to 
install a machine is : 
 
   EVERY n CYCLES SCHEDULE-RUNS word 
 
So for our single machine we’d say: 
 
   ZIPON SET-STATE 
   EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN 
 
Now if you look at your green LED, you’ll see it is slightly dimmed.  
 

 
 
That’s because it is being turned off half the time, and is on half the time. But it is happening so fast you can’t even 
see it. 
 

20. REDYEL 
 
Let’s do another of the same kind. This time lets do the red and yellow LED, and have them toggle, only one on at a 
time. Here we go: 
 
MACHINE REDYEL 
 
  ON-MACHINE REDYEL 
    APPEND-STATE REDON 
    APPEND-STATE YELON 



 
IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE  
YELON TO-HAPPEN 
 
IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE  
REDON TO-HAPPEN 
 
Notice we have more things happening in the action this time. One LED is turned on and one off in the action. You 
can have multiple instructions in an action. 
 
Test it. Type: 
 
REDON SET-STATE 
REDYEL 
REDYEL 
REDYEL 
REDYEL 
 
See the red and yellow LED’s trade back and forth from on to off and vice versa.  
 
 

 
 
All this time, the ZIPGRN machine has been running in the background, because it is in the installed machine chain. 
Let’s replace the installed machine chain with another. So we define a new machine chain with both our virtual 
machines in it, and install it. 
 
 
MACHINE-CHAIN CHN2 
  ZIPGRN 
  REDYEL 
END-MACHINE-CHAIN  
 
REDON SET-STATE 
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2 
 
With the new machine chain installed, all three LED’s look slightly dimmed.  
 

 



 
Again, they are being turned on and off a thousand times a second. But to your eye, you can’t see the individual 
transitions. Both our virtual machines are running in virtual parallel, and we still don’t see any slow down in the 
interactive nature of the IsoPod™. 
 
So what was the point of making these two machines? Well, these two machines are running faster than the previous 
ones. The previous ones were installed with 50,000 cycles between runs. That gave a scan-loop repetition of 100 
times a second. Fine for many mechanical issues, on the edge of being slow for electronic interfaces. These last 
examples were installed with 5,000 cycles between runs. The scan-loop repetition was 1000 times a second. Fine for 
many electronic interfaces, that is fast enough. Now let’s change the timing value. Redo the installation with the 
SCHEDULE-RUNS command. 
 
The scan-loop repetition is 10,000 times a second.  
 
EVERY 500 CYCLES SCHEDULE-RUNS CHN2 
 
Let’s see if we can press our luck. 
 
EVERY 100 CYCLES SCHEDULE-RUNS CHN2 
 
Even running two machines 50,000 times a second in high-level language, there is still time left over to run the 
foreground routine. This means, two separate tasks are being started and running a series of high-level instructions 
50,000 times a second. This shows the IsoPod™ is running more than four hundred thousand high-level instructions 
per second. The IsoPod™ performance is unparalleled in any small computer available today. 
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