
Object Oriented Extensions
These words provide a fast and compact object-oriented capability to MaxForth. It defines Forth words as
"methods" which are associated only with objects of a specific class.

Action of an Object
An object is very much like a <BUILDS DOES> defined word. It has a user-defined data structure which
may involve both Program ROM and Data RAM. When it is executed, it makes the address of that
structure available (though not on the stack...more on this in a moment).

What makes an object different is that there is a "hidden" list of Forth words which can only be used by that
object (and by other objects of the same class). These are the "methods," and they are stored in a private
wordlist. Note that this is not the same as a Forth "vocabulary." Vocabularies are not used, and the
programmer never has to worry about word lists.

Each method will typically make several references to an object, and may call other methods for that
object. If the object's address were kept on the stack, this would place a large burden of stack management
on the programmer. To make object programming simpler and faster, the address of the current object is
stored in a variable, OBJREF. The contents of this variable (the address of the current object) can always
be obtained with the word SELF.

When executed (interpreted), an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Store the object's address into OBJREF.
After this, the private methods of the object can be executed. (These will remain available until an object
of a different class is executed.)

When compiled, an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Compile code into the current definition which will store the object's address into OBJREF.
After this, the private methods of the object can be compiled. (These will remain available until an object
of a different class is compiled.) Note that both the object address and the method are resolved at compile
time. This is "early binding" and results in code that is as fast as normal Forth code.

In either case, the syntax is identical:
 object method
For example:
 REDLED TOGGLE

Defining a new class

BEGIN-CLASS name

Words defined here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

PUBLIC

Words defined here will be visible at all times.
These will normally be the "objects" which are used in the main program.

END-CLASS name

Defining an object

OBJECT name This defines a Forth word "name" which will be an object of the current class. The

object will initially be "empty", that is, it will have no ROM or RAM allocated to it. The
programmer can add data structure to the object using P, , PALLOT and ALLOT, in
the same manner as for <BUILDS DOES> words. Like <BUILDS DOES>, the action of
an object is to leave its Program memory address.

Referencing an object

SELF This will return the address of the object last executed. Note that this is an address in

Program memory. If the object will use Data RAM, it is the responsibility of the
programmer to store a pointer to that RAM space. See the example below.

Object Structure
An object may have associated data in both Program and Data spaces. This allows ROM parameters which
specify the object (e.g., port numbers for an I/O object); and private variables ("instance variables") which
are associated with the object. By default, objects return their Program (ROM) address. If there are RAM
variables associated with the object, a pointer to those variables must be included in the ROM data.

Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

Note that also OBJECT creates a pointer to Program space, it does not reserve any Program or Data
memory. That is the responsibility of the programmer. This is done in the same manner as the <BUILDS
clause of a <BUILDS DOES> definition, using P, or PALLOT to add cells to Program space and , or
ALLOT to add cells to Data space. The programmer can use OBJECT to build a custom defining word for
each class. See the example below.

Example using ROM and RAM
This is an example of an object which has both ROM data (a port address) and RAM data (a timebase
value).

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC
 0D00 TIMER TA0
 0D08 TIMER TA1
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT. Then it reserves
one cell of Data RAM (1 ALLOT) and stores the starting address of that RAM (HERE) into Program
memory (P,). This builds the RAM pointer as shown above. Finally, it stores the I/O port address "a" into

the second cell of Program memory (the second P,). Each object built with TIMER will have its own copy
of this data structure.

After the object is executed, SELF will return the address of the Program data for that object. Because
we've stored a RAM pointer as the first Program cell, the phrase SELF P@ will return the address of the
RAM data for the object. It is not required that the first Program cell be the RAM pointer, but this is
strongly recommended as a programming convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object (since that was
stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also build them into
other Forth words. All of this will normally go in the "private" class dictionary:

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;

 : TMR_PERIOD (-- a) SELF P@ ; (RAM variable for this timer)
 : BASEADDR (-- a) SELF CELL+ P@ ; (I/O addr for this timer)
 : TMR_SCR (-- a) BASEADDR 7 + ; (Control register)

 : SET-PERIOD (n --) TMR_PERIOD ! ;
 : ACTIVE-HIGH (--) 0202 TMR_SCR CLEAR-BITS ;
PUBLIC
 0D00 TIMER TA0 (Timer with I/O address 0D00)
 0D08 TIMER TA1 (Timer with I/O address 0D08)
END-CLASS TIMERS

After this, the phrase 100 TA0 SET-PERIOD will store the RAM variable for timer object TA0, and
200 TA1 SET-PERIOD will store the RAM variable for timer object TA1. TA0 ACTIVE-HIGH will
clear bits in timer A0 (at port address 0D07), and TA1 ACTIVE-HIGH will clear bits in timer A1 (at port
address 0D0F).

In a WORDS listing, only TA0 and TA1 will be visible. But after executing TA0 or TA1, all of the words
in the TIMERS class will be found in a dictionary search.

Because the "methods" are stored in private word lists, you can re-use method names in different classes.
For example, it is possible to have an ON method for timers, a different ON method for GPIO pins, a third
ON method for PWM pins, and so on. When the object is named, it will automatically select the correct set
of methods to be used! Also, if a particular method has not been defined for a given object, you will get an
error message if you attempt to use that method with that object. (One caution: if there is word in the Forth
dictionary with the same name, and there is no method of that name, the Forth word will be found instead.
An example of this is TOGGLE. If you have a TOGGLE method, that will be compiled. But if you use an
object that doesn't have a TOGGLE method, Forth's TOGGLE will be compiled. For this reason, methods
should not use the same names as "ordinary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names. For example, you
can't have a Timer named A0 and a GPIO pin named A0. You must give them unique names like TA0 and
PA0.

GPIO Bit I/O Class
These words support the GPIO I/O of the DSP56F80x. The following GPIO pins are defined as objects:

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
PD3 PD2 PD1 PD0
REDLED YELLED GRNLED

For each pin, the following methods can be performed:

ON Makes the pin an output, and outputs a '1' (high level).
OFF Makes the pin an output, and outputs a '0' (low level).
TOGGLE Makes the pin an output, and inverts its level.
n SET Stores a T/F value to the pin, e.g., 1 PA0 SET. Any nonzero value is "true."
GETBIT Makes the pin an input, and returns pin value (as a bit mask).
ON? Makes the pin an input, and returns true if pin is '1' (high level).
OFF? Makes the pin an input, and returns true if pin is '0' (low level).
IS-INPUT Makes pin an input (hi-Z).
IS-OUTPUT Makes pin an output. Pin will output the last programmed level.

Examples of use:

PA0 OFF (output a low level on PA0)
0 PA0 SET (also outputs a low level on PA0)
REDLED ON (output a high level, turn the red LED on)
PD3 ON? (check if PD3 is a logic '1')

GPIO Byte I/O Class
These words support the GPIO I/O of the DSP56F80x as bytes. The following GPIO ports are defined as
objects:

PORTA PORTB

For each pin, the following methods can be performed:

IS-INPUT Makes port an input (hi-Z).
IS-OUTPUT Makes port an output. Pin will output the last programmed level.
PUTBYTE Makes port an output, and outputs the given byte (8 bits).
GETBYTE Makes port an input, and reads it as a byte (8 bits).

Examples of use:

55 PORTA PUTBYTE (output 55 to GPIO Port A)
PORTB GETBYTE . (read GPIO Port B and type its numeric value)

Timer I/O Class
These words support the Counter/Timers of the DSP56F80x. The following timers are defined as objects:

TA0 TA1 TA2 TA3
TB0 TB1 TB2 TB3
TC0 TC1 TC2 TC3
TD0 TD1 TD2

For each Counter/Timer, the following methods can be performed:

ON Makes the counter/timer pin an output, and outputs a '1' (high level).
OFF Makes the counter/timer pin an output, and outputs a '0' (low level).
TOGGLE Makes the counter/timer pin an output, and inverts its level.
n SET Stores a T/F value to the pin, e.g., 1 TA0 SET. Any nonzero value is "true."
GETBIT Makes the counter/timer pin an input, and returns pin value (as a bit mask).
ON? Makes the counter/timer pin an input, and returns true if pin is '1' (high level).
OFF? Makes the counter/timer pin an input, and returns true if pin is '0' (low level).

The following methods can be used to generate PWM signals and to measure pulse width:

ACTIVE-HIGH Makes the pin "active high" for PWM output or input. For output, PWM-OUT will

control the high pulse width. For input, PWM-IN will measure the width of the high
pulse. The reset default is ACTIVE-HIGH.

ACTIVE-LOW Makes the pin "active low" for PWM output or input. For output, PWM-OUT will control
the low pulse width. For input, PWM-IN will measure the width of the low pulse.

n PWM-PERIOD Specifies the period (frequency) of the PWM output. Values from 100 to FFFF hex
are valid. The counter frequency is 2.5 MHz; FFFF hex corresponds to a period of
26.214 msec (38 Hz). PWM-PERIOD must be specified before using PWM-OUT.

n PWM-OUT Makes the counter/timer pin an output, and outputs a continuous PWM signal with the
given duty cycle. Values from 0 to FFFF hex are valid. 0 is a duty cycle of 0% (always
off); FFFF is a duty cycle of 100% (always on). 8000 hex gives a duty cycle of 50%.
PWM-PERIOD must be specified before using PWM-OUT.

PWM-IN Makes the counter/timer pin an input, and measures the width of one pulse on that input.
Returns a value from 1 to FFFF hex. The counter rate is 2.5 MHz, thus each count is 0.4
usec, and a returned value of 10000 decimal corresponds to 4 msec.

Examples of use:

TC0 ON (output a high level on the TC0 pin)
TA3 ON? (check if TA3 pin, HOME0, is a logic '1')

DECIMAL 50000 TC1 PWM-PERIOD (specify 20 msec period = 50 Hz)
TC1 ACTIVE-HIGH (specify active-high output)
HEX 4000 TC1 PWM-OUT (output 25% high, 75% low)

PWM I/O Class
These words support the PWM generators of the DSP56F80x. The following PWM outputs are defined as
objects:

PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5
PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5

For each PWM output, the following methods can be performed:

ON Outputs a '1' (high level).
OFF Outputs a '0' (low level).
TOGGLE Inverts the output level.
n SET Stores a T/F value to the pin, e.g., 1 PWMA0 SET. Any nonzero value is "true."

The following methods can be used to generate PWM signals:

n PWM-PERIOD Initializes the PWM output, and specifies its period (frequency). Values from 100 to

7FFF hex are valid. The effective counter frequency is 2.5 MHz; 7FFF hex corresponds
to a period of 13.106 msec (76 Hz). PWM-PERIOD must be specified before using PWM-
OUT. Note: setting the period for any "A" PWM will affect all six "A" PWMs. Setting the
period for any "B" PWM will affect all six "B" PWMs.

n PWM-OUT Outputs a continuous PWM signal with the given duty cycle. Values from 0 to FFFF hex
are valid. 0 is a duty cycle of 0% (always off); FFFF is a duty cycle of 100% (always
on). 8000 hex gives a duty cycle of 50%. PWM-PERIOD must be specified before using
PWM-OUT.

The following PWM inputs are defined as objects:

FAULTA0 FAULTA1 FAULTA2 FAULTA3 ISA0 ISA1 ISA2
FAULTB0 FAULTB1 FAULTB2 FAULTB3 ISB0 ISB1 ISB2

For each PWM input, the following methods can be performed:

GETBIT Returns pin value (as a bit mask).
ON? Returns true if pin is '1' (high level).
OFF? Returns true if pin is '0' (low level).

Examples of use:

PWMB0 ON (output a high level on the PWMB0 pin)
ISA1 ON? (check if ISA1 pin is a logic '1')

DECIMAL 25000 PWMA1 PWM-PERIOD (specify 10 msec period = 100 Hz)
HEX 4000 PWMA1 PWM-OUT (output 25% high, 75% low)

SPI I/O Class
These words support the SPI port of the DSP56F80x. Only one SPI port is present; it is referenced as
object

SPI0

The following methods can be performed for the SPI port:

MASTER Specifies that the DSP56F80x will act as an SPI Master.
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI. Values from 2

to 16 are valid.
MSB-FIRST Specifies that words should be sent and received MSB first.
LSB-FIRST Specifies that words should be sent and received LSB first.
n MBAUD Specifies the bit rate to be used for the SPI port. Four values can be specified: 20 (20

Mbits/sec), 5 (5 Mbits/sec), 2 (2.5 Mbits/sec), and 1 (1.25 Mbits/sec). All other values
will be ignored and will leave the baud rate unchanged.

n TX-SPI Transmits one word on the SPI port. This will output 2 to 16 bits on the MOSI pin
(Master mode) and generate 16 clocks on the SCLK pin. This will simultaneously input 2
to 16 bits on the MISO pin (Master mode).

RX-SPI Receives one word from the SPI port. This word must already have been shifted into the
receive shift register; if it has not, RX-SPI will wait for it to be shifted in. In Master
mode, data will only be shifted in when a word is transmitted by TX-SPI. In this mode
you should use RX-SPI immediately after TX-SPI to read the data that was received.

It is acceptable to specify all the SPI parameters after selecting the SPI port. Example of use:

SPI0 MASTER 16 BITS MSB-FIRST 5 MBAUD
SPI0 TX-SPI SPI0 RX-SPI

The default polarity for the SPI port is CPHA=0, CPOL=1. This means that the SCLK line will be high
between words, and that the slave should clock data on the falling edge. (Refer to figure 13-4 in the
Motorola DSP56F801-7 Users Manual.)

ADC I/O Class
These words support the A/D converter of the DSP56F80x. The following ADC inputs are defined as
objects:

ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7

Only one method can be used with A/D inputs:

ANALOGIN Reads the A/D input and returns its value. The result is in the range 0-7FF8. (The 12-bit

A/D result is left-shifted 3 places.) 7FF8 corresponds to an input of Vref. 0 corresponds
to an input of 0 volts.

Example of use:

ADC7 ANALOGIN (read A/D channel 7, pin AN7)

	Object Oriented Extensions
	Action of an Object
	Defining a new class
	Defining an object
	Referencing an object
	Object Structure
	Example using ROM and RAM

	GPIO Bit I/O Class
	GPIO Byte I/O Class
	Timer I/O Class
	PWM I/O Class
	SPI I/O Class
	ADC I/O Class

