
Application Note: Machine Code Programming
IsoMax allows individual words to be written in machine code as well as “high-level” language code. Such words
are indistinguishable in function from high-level words, and may be used freely in application programs and state
machines.

Assembler Programming
The IsoPod uses the Motorola DSP56F805 microprocessor. The machine language of this processor is described in
Motorola's DSP56800 16-Bit Digital Signal Processor Family Manual, available at

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

IsoMax does not include a symbolic assembler for this processor. You must use an external assembler to convert
your program to the equivalent hexadecimal machine code, and then insert these numeric opcodes and operands into
your IsoMax source code.1 For an example, let's use an assembler routine to stop Timer C2:
 ; Timer/Counter
 ; -------------
 ; Timer control register
 ; 000x xxxx xxxx xxxx = no count
 andc #$1FFF,X:$0D56 ; TMRC2_CTRL

 ; Timer status & control register
 ; Clear TCF flag, clear interrupt enable flag
 bfclr #$8000,X:$0D57 ; TMRC2_SCR clear TCF
 bfclr #$4000,X:$0D57 ; TMRC2_SCR clear TCFIE

Translated to machine code, this is:
80F4 andc #$1FFF,X:$0D56
0D56
E000
80F4 bfclr #$8000,X:$0D57
0D57
8000
80F4 bfclr #$4000,X:$0D57
0D57
4000

To compile this manually into an IsoMax word, you must append each hexadecimal value to the dictionary with the
P, operator. (The “P” refers to Program space,where all machine code must reside.) You can put more than one
value per line:
80F4 P, 0D56 P, E000 P,
80F4 P, 0D57 P, 8000 P,
80F4 P, 0D57 P, 4000 P,

All that remains is to add this as a word to the IsoMax dictionary, and to return from the assembler code to IsoMax.
There are three ways to do this: with CODE, CODE-SUB, and CODE-INT.

1 If you wish to translate your programs manually to machine code, a summary chart of DSP56800 instruction
encoding is given at the end of this application note.

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

CODE functions
The special word CODE defines a machine language word as follows:
CODE word-name

 (machine language for your word)

 (machine language for JMP NEXT)
END-CODE

Machine code words that are created with CODE must return to IsoMax by performing a jump to the special address
NEXT. In IsoMax versions 0.52 and higher, this is address $0080. Earlier versions of IsoMax do not support NEXT
and you must use CODE-SUB, described below, to write machine code words.

An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080, and our example STOP-
TIMERC2 word could be written as follows:
HEX
CODE STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 E984 P, 0080 P, (JMP NEXT)
END-CODE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

CODE-SUB functions
The special word CODE-SUB is just like CODE, except that the machine code returns to IsoMax with an ordinary
RTS instruction. This can be useful if you need to write a machine code routine that can be called both from IsoMax
and from other machine code routines. It's also useful if the NEXT address is not available (as in IsoMax versions
prior to 0.52). The syntax is similar to CODE:
CODE-SUB word-name

 (machine language for your word)

 (machine language for RTS)
END-CODE

An RTS instruction is $EDD8, so STOP-TIMERC2 could be written with CODE-SUB as follows:
HEX
CODE-SUB STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 EDD8 P, (RTS)
END-CODE

This example will work in all versions of IsoMax.

CODE-INT functions
CODE-INT is just like CODE-SUB, except that the machine code returns to IsoMax with an RTI (Return from
Interrupt) instruction, $EDD9. This is useful if you need to write a machine code interrupt handler that can also be
called directly from IsoMax. CODE-INT is only available on IsoMax versions 0.52 and later.
HEX
CODE-INT STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 EDD9 P, (RTI)
END-CODE

To obtain the address of the machine code after it is compiled, use the phrase
 ' word-name CFA 2+

Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD before trying to obtain the
address of the machine code. EEWORD will change this address.

Register Usage
In the current version of IsoMax software, all DSP56800 address and data registers may be used in your CODE and
CODE-SUB words. You need not preserve R0-R3, X0, Y0, Y1, A, B, or N. Do not change the “mode” registers
M01 or OMR, and do not change the stack pointer SP.

Future versions of IsoMax may add more restrictions on register use. If you are concerned about compatibility with
future kernels, you should save and restore all registers that your machine code will use.

CODE-INT words are expected to be called from interrupts, and so they should save any registers that they use.

Calling High-Level Words from Machine Code
You can call a high-level IsoMax word from within a machine-code subroutine. This is done by calling the special
subroutine ATO4 with the address of the word you want to execute.2 This address must be a Code Field Address
(CFA) and is obtained with the phrase
 ' word-name CFA

This address must be passed in register R0. You can load a value into R0 with the machine instruction $87D0,
$xxxx (where xxxx is the value to be loaded).

The address of the ATO4 routine can be obtained from a constant named ATO4. You can use this constant directly
when building machine code. The opcode for a JSR instruction is $E9C8, $aaaa where aaaa is an absolute address.
So, to write a CODE-SUB routine that calls the IsoMax word DUP, you could write:
HEX
CODE-SUB NEWDUP
 87D0 P, ' DUP CFA P, (move DUP CFA to R0)
 E9C8 P, ATO4 P, (JSR ATO4)
 EDD8 P, (RTS)
END-CODE

Observe that the phrases ' DUP CFA and ATO4 are used within the CODE-SUB to generate the proper addresses
where required.

2The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

Appendix: DSP56F805 Instruction Encoding
 DSP56800 OPCODE ENCODING

(1) 00Wk kHHH Fjjj xmRR (14) P1DALU jjj,F X:<ea_m>,HHH

(2) 010y y0yy y*pp pppp (11-*) ADD/SUB/CMP/INC/DEC X:<aa>[,fff]
(3) 010y y0yy y+aa aaaa (11-*) ADD/SUB/CMP/INC/DEC X:(SP-xx)[,fff]
(4) 010y y1yy y00B BBBB (10) ADD/SUB/CMP #<0-31>,fff
(5a) 010y y1yy y10- ---- (5-2) ADD/SUB/CMP #xxxx,fff
(5b) 010y y1yy yw11 -1-- (6-2) ADD/SUB/CMP/INC/DEC X:xxxx[,fff]

(7) 011u u0v1 Fvjj xm-v (10) P2DALU jj,F X:<ea_m>,reg X:<ea_v>,X0
(8a) 011L L1L- FQQQ 10FF (9) DALU3OP QQQ,FFF
(8b) 011I I1II FQQQ 11FF (10) DALU3OP2 QQQ,FFF
(8c) 011K K1K- F000 0h00 (4) DALU2OPF ~F,F (KKK = KK0) (h=1: Tcc)
(8d) 011K K1K- F000 0h00 (4) DALU2OPY Y,F (KKK = KK1) (h=1 used)
(8e) 011K K1K- F000 0hF1 (5) DALU2OPB1 B1,FF (h=1: Tcc)
(8f) 011K K1K- F010 0hF1 (5) DALU2OPA1 A1,FF (h=1: Tcc)
(8g) 011K K1K- F0qq 0h00 (6) DALU1OPF F (qq != 00)
(h=1 used)
(8h) 011K K1K- F0q1 0hF1 (6) DALU1OPFF FF
(h=1: LSL,LSR)
(8i) 011K K1K- F1JJ 0hFF (8) DALU2OPJJ JJ,FFF (h=1: DIV,Tcc)
(8j) 0110 11CC FJJJ 01CZ (8) Tcc JJJ,F [R0->R1] (h=1:
Tcc)

(9) 10W1 HHHH 0Ppp pppp (12) MOVE X:<Ppp>,REG
(10a) 10W1 HHHH 1*AA AAAA (11) MOVE X:(R2+xx),REG
(10b) 10W1 HHHH 1+aa aaaa (11) MOVE X:(SP-xx),REG
(11) 11W1 DDDD D0-M RMRR (12) MOVE X:<ea_MM>,DDDDD
(12) 11W1 DDDD D1-0 R1RR (10) MOVE X:(Rn+N),DDDDD
(13) 11W1 DDDD D1-0 R0RR (10-2) MOVE X:(Rn+xxxx),DDDDD
(14) 11W1 DDDD D1-1 -1-- (7-2) MOVE X:<abs_adr>,DDDDD

(15) 1000 DDDD D00d dddd (10) MOVE ddddd,DDDDD
(16) 1000 1110 *011 00RR (2) TSTW (Rn)-
(17) 1000 UUU+ 110d dddd (8-2) BITFIELD DDDDD; MOVE #xxxx,DDDDD
(18) 1000 UUU0 111+ -+-- (3-3) BITFIELD X:xxxx; MOVE #xxxx,X:xxxx
(19a) 1010 UUU0 1+aa aaaa (9-2) BITFIELD X:(SP-xx); MOVE #xxxx,X:(SP-xx)
(19b) 1010 UUU0 1*AA AAAA (9-2) BITFIELD X:(R2+xx); MOVE #xxxx,X:(R2+xx)
(20) 1010 UUU1 1Ppp pppp (10-2) BITFIELD X:<Ppp>; MOVE #xxxx,X:<Ppp>
(21) 1010 CCCC 0Aaa aaaa (11) Bcc <aa>, BRA

(22) 1100 HHHH *BBB BBBB (11) MOVE #xx,HHHH
(23) 1100 11E0 1*BB BBBB (7-*) DO/REP #xx
(24) 1100 11E0 11-d dddd (6-*) DO/REP ddddd
(25a) 1110 CCCC 10A- -1AA (7-2) Jcc, JMP xxxxx
(25b) 1110 1001 11A0 10AA (*-2) JSR xxxxx
(26) 1110 1101 11-1 10-0 (0) RTS
(27) 1110 1101 11-1 10-1 (0) RTI
(29) 1110 HHHH *0W* *mRR (8) MOVE P:<ea_m>,HHHH

(30) 1110 ---- -1-- 0000 (0) NOP
(31) 1110 ---- -1-- 0001 (0) DEBUG
(--) 1110 ---- -1-- 0010 (0) ($E042 -reserved for "ADD <reg>,<mem>")
(32) 1110 ---- -1-- 01tt (2) STOP, WAIT, SWI, ILLEGAL

(--) 1100 ---- 111- ---- (9) <Available Hole>
(--) 1110 ---- 111- ---- (9) <Available Hole>
(--) 1110 ---- 01-- ---- (10) <Available Hole>

Understanding entries in the above encoding:
--
A typical entry in the encoding files looks like this:

(8b) 011I I1II FQQQ 11FF (10) DALU3OP2 QQQ,FFF

 ^ \ / ^ ^
 | ---------v---------- | |
 | | | |

 | | | +---- (see #1 below)
 | | +------------- (see #2 below)
 | +---------------------------- (see #3 below)
 +--- (see #4 below)

 #1: This field gives the name of the instruction or of a class of
 instructions which are encoded with the bit pattern specified in #3.

 An example of where this field contains an instruction is for the
 "TSTW (Rn)-" instruction. In this case, only the operands of the
 instruction are encoded with the bits in #3 below.

 An example of where this field contains a class of instructions
 is given in the example above "DALU3OP2 QQQ,FFF". In this case,
 the entry DALU3OP2 represents a class of instructions, and the
 instruction selected within this class is selected by the IIII field
 within the encoding specified in #2.

 Instruction classes such as "DALU3OP2" can be seen by searching
 in this file for the following field - "DALU3OP2:", where the field
 is located in the very first character of the line.

 #2: The number here indicates how many bits are required to encode
 this instruction. For the example shown above, 10 bits are
 required to hold the following bits - IIIIFQQQFF. The information
 in this particular field is useful to the design group.

 If the number in this field is followed by a "-2" or "-3", the "-2"
 is used to indicate a two word instruction, and the "-3" is used
 to indicate a three word instruction.

 For the case of the "ADD/SUB/CMP/INC/DEC X:<aa>[,fff]" instruction
 which uses "(11-*)", this indicates that this class of instructions
 can vary in number of instruction words. For this particular example,
 this can be seen more clearly in the section entitled "Unusual
 Instruction Encodings" located within this document.

 #3: This portion represents the 16 opcode bits of the instruction.
 For single word instructions, it contains the entire one word
 16-bit opcode. For multiword instructions, it contains the
 first word for the instruction.

 The example above contains the following fields within the instruction:
 IIII, FFF, QQQ
 Note that although there are four I bits to form the "IIII" field, these
 bits are not necessarily all next to each other. This is also the case
 for the three bits comprising the "FFF" field.

 #4: The number here gives a unique number to this particular instruction
 or class of instructions. This is used simply for identification
 purposes.

Notes for Above Encoding:

 1. Where a "*" is present in a bit in the encoding, this means the PLAs
 often use this bit to line up in a field, but that the assembler should
 always see this as a "0". Where a "+" is present, it is similar, but
 assembles as a "1". A "-" is ignored by the PLAs and assembled as a "0".

 2. It is important to note that several instructions are not found
 on the first page of the encoding, which summarizes the entire
 instruction set. These instructions are instead found in the
 section entitled "Unusual Instruction Encodings" located within
 this document. Instructions in this section include:
 - ADD fff,X:<aa>:
 - ADD fff,X:(SP-xx):
 - ADD fff,X:xxxx:
 - LEA
 - TSTW
 - POP
 - CLR (although CLR is also encoded in the Data ALU section)
 - ENDDO

 See this section to see how these instructions are encoded.

 3. The use of the bit pattern labelled
 "($E042 -reserved for "ADD <reg>,<mem>")"
 is explained in more detail in the "Unusual Instruction Encodings"
 section. It is not an instruction in itself, but rather enables
 an encoding trick discussed for the ADD instruction in that section.

 Understanding the 2 and 1 Operand Data ALU Encodings

The Data ALU operations were encoded in a manner which is not straightforward.
The three operand instructions were relatively straightforward, but the
encoding of the two and one operand instructions was more difficult.

More information is presented at the field definitions for "KKK" and "JJJ".
This is the best place to clearly understand the Data ALU encodings.

(Also see the encoding information located at the "KKK" field.)

Data ALU Source and Destination Register Field Definitions:
===

F: F Destination Accumulator
 - -----------------------
 0 A
 1 B

~F:
 "~F" is a unique notation used in some cases to signify the source
 register in a DALU operation. It's exact definition is as follows:
 If "F" is the "A" accumulator, Then "~F" is the "B" accumulator.
 If "F" is the "B" accumulator, Then "~F" is the "A" accumulator.

FF: FF Destination Register
 --- --------------------
 00 X0 (NOTE: not all DALU instrs can have this as a destination)
 10 (reserved)
 01 Y0 (NOTE: not all DALU instrs can have this as a destination)
 11 Y1 (NOTE: not all DALU instrs can have this as a destination)

FFF: FFF Destination Register
 --- --------------------
 000 A
 100 B

 001 X0 (NOTE: not all DALU instrs can have this as a destination)
 101 (reserved)
 011 Y0 (NOTE: not all DALU instrs can have this as a destination)
 111 Y1 (NOTE: not all DALU instrs can have this as a destination)

 NOTE: The MPY, MAC, MPYR, and MACR instructions allow x0, y0,
 or y1 as a destination. FFF=FF1 IS allowed for the case
 of a negated product: -y0,x0,FFF for example is allowed.
 Also, MPYsu, MACsu, IMPY16, LSRR, ASRR, and ASLL allow
 FFF as a destination, but the ASRAC & LSRAC instructions
 only allow F, and LSLL only allows DD as destinations.

 Although the LSLL only allows 16-bit destinations, there is
 the ASLL instruction which performs exactly the same operation
 and allows an accumulator as well as a destination.

fff: fff Destination Register
 --- --------------------
 000 A (ADD/SUB/CMP only)
 001 B (ADD/SUB/CMP only)

 100 X0 (ADD/SUB/CMP only)
 101 (reserved for X1)
 110 Y0 (ADD/SUB/CMP only)
 111 Y1 (ADD/SUB/CMP only)

 --

QQQ: (6-4)
 This field specifies two input registers for instructions in the
 DALU3OP, DALU3OP2, and P1DALU instruction classes. There are some
 instructions where the ordering of the two source operands is important
 and some where the ordering is unimportant.

 Three different cases are presented below for instructions using the
 QQQ field. Some examples are also included for clarification.
 Note that the bottom 4 entries are designed to overlay the "QQ" field.

 1. "QQQ" definition for: ASRR, ASLL, LSRR, LSLL, ASRAC, & LSRAC instrs

 QQQ Shifter inputs (must be in this order)
 --- -----------------
 000 (reserved for X1,Y1)
 001 B1,Y1
 010 Y0,Y0
 011 A1,Y0
 100 Y0,X0
 101 Y1,X0
 110 (reserved for X1,Y0)
 111 Y1,Y0

 For Multi-bit shift instructions:
 - 1st reg specified is value to be shifted
 - 2nd reg specified is shift count (uses 4 LSBs)

 Examples of valid Multi-bit shift instructions:
 asll b1,y1,a ; b1 is value to be shifted, y1 is shift
amount
 asrr y1,x0,b ; y1 is value to be shifted, x0 is shift
amount

 Examples of INVALID Multi-bit shift instructions:
 asll y1,b1,a ; Not allowed - b1 must be first for
QQQ=001
 asrr x0,y1,b ; Not allowed - y1 must be first for
QQQ=101

 2. "QQQ" definition for: MPYsu and MACsu instrs

 QQQ Multiplier inputs (must be in this order)
 --- -----------------
 000 (reserved for Y1,X1)
 001 Y1,B1
 010 Y0,Y0
 011 Y0,A1
 100 X0,Y0
 101 X0,Y1
 110 (reserved for Y0,X1)
 111 Y0,Y1

 For MPYsu or MACsu instructions:
 - 1st reg specified in QQQ above is "signed" value
 - 2nd reg specified in QQQ above is "unsigned" value

 Examples of valid MPYsu and MACsu instructions:
 mpysu y1,b1,a ; y1 is signed, b1 unsigned, QQQ = 001
 macsu x0,y1,b ; x0 is signed, y1 unsigned, QQQ = 101

 Examples of INVALID MPYsu and MACsu instructions:
 mpysu b1,y1,a ; Not allowed - y1 must be signed for QQQ=001
 macsu y1,x0,b ; Not allowed - x0 must be signed for QQQ=101

 The Multi-bit shift instructions include:
 ASRR, ASLL, LSRR, LSLL, ASRAC, and LSRAC

 3. "QQQ" definition for: All other instructions using "QQQ"

 QQQ Multiplier inputs Also Accepted by Assembler

 --- ----------------- --------------------------
 000 (reserved for Y1,X1) (reserved for X1,Y1)
 001 Y1,B1 B1,Y1
 010 Y0,Y0 Y0,Y0
 011 Y0,A1 A1,Y0
 100 X0,Y0 Y0,X0
 101 X0,Y1 Y1,X0
 110 (reserved for Y0,X1) (reserved for X1,Y0)
 111 Y0,Y1 Y1,Y0

 For all other of these instructions:
 - operands can be specified in either order

 Examples of valid MPY and MAC instructions:
 mpy y1,b1,a ; Operands are: y1 and b1 (ordering unimpt)
 mpy b1,y1,a ; Operands are: y1 and b1 (ordering unimpt)
 mac x0,y1,b ; Operands are: y1 and x0 (ordering unimpt)
 mac y1,x0,b ; Operands are: y1 and x0 (ordering unimpt)

 NOTE: If the source operand ordering is incorrect, then the assembler
 must flag this as an error.

Data-Alu Opcode Field Definitions:
==================================

q: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

qq: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

DALU3OP:

LLL: LLL Multiplication Operation
 --- ------------------------
 000 MPY + (neither operand inverted)
 001 MPY - (one operand inverted)
 010 MAC + (neither operand inverted)
 011 MAC - (one operand inverted)
 100 MPYR + (neither operand inverted)
 101 MPYR - (one operand inverted)
 110 MACR + (neither operand inverted)
 111 MACR - (one operand inverted)

h: (2)
 The "h" bit, when set to a "1" is used to encode the following
 non-multiply DALU instructions:
 - ADC, SBC
 - NORM R0
 - LSL, LSR
 - DIV

 For exact details on this, see the "KKK" field definition below.

DALU2OPF:
DALU2OPY:
DALU2OPB1:
DALU2OPA1:
DALU1OPF:
DALU1OPFF:
DALU2OPJJ:

KKK: ()

 The KKK fields cannot be uniquely decoded without looking at the
 values in some other bits of the opcode. In the below charts, the
 KKK field holds many different encodings depending on the values
 in bits 6-4, what was previously called the JJJ field, and bit 2,
 which was previously labelled as "h". The JJJ and h fields have
 now been removed and this chart now contains the information
 previously held by these bits.

 Four different charts are presented below, where the four charts
 correspond to different values "00, 01, 10, and 11" in bits 2 and 0
 of the opcode.

 Note that the KKK entries are numbered in an ascending order
 from 0 to 7. This also differs from the numbering in the original
 encoding file (encode8) so the entries in the chart will now appear
 to be in a different order.

 Notation for the below charts:
 <<NA>> - Indicates field is not available for any instruction
 <<Tc>> - Indicates space is not available because it is occupied
 by the Tcc instruction.
 ~F - Indicates source is the accumulator not used as the dest
 --- - Indicates field is unused

Chart 1 - Basic Data ALU, Destination is "F"
--

 This chart is used to encode MOST non-multiply Data ALU instructions
 where the result of the operation is stored in one of the accumulators,
 A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +-------------+-----++---+
 | bbb b b | || KKK
 |
 | iii i i | || ---
 |
 | ttt t t | || |
 |
 | | || |
 |
 | 654 2 0 | || |
 |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK JJJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KK0 000 0 0 | ~F || ADD |<<NA>>| TFR |<<NA>>| SUB |<<NA>>| CMP |<<NA>>|
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KK1 000 0 0 | Y ||<<NA>>| ADD |<<NA>>| -- |<<NA>>| SUB |<<NA>>| -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 001 0 0 | F || DECW | -- | NEG | NOT | RND | -- | TST | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 010 0 0 | F || -- | -- | ABS | -- | -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 011 0 0 | F || INCW | -- | CLR | -- | ASL | ROL | ASR | ROR |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 100 0 0 | X0 || ADD | OR | TFR | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 101 0 0 | Y0 || ADD | OR | TFR | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 110 0 0 | -- || -- | -- | -- | -- | -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 111 0 0 | Y1 || ADD | OR | TFR | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+

 Note that there are nine rows above. This is because the entry for
 "JJJ" = 000 is broken into two different rows - one where the LSB
 of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
 (source is "Y") .

Chart 2 - Basic Data ALU, Destination is "DD"

 This chart is used to encode MOST non-multiply Data ALU instructions
 where the result of the operation is stored in one of the data regs,
 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 This chart encodes both the arithmetic operation and source register

 for the operation. The destination is encoded with the "FF" bits.

 +-------------+-----++---+
 | bbb b b | || KKK
 |
 | iii i i | || ---
 |
 | ttt t t | || |
 |
 | | || |
 |
 | 654 2 0 | || |
 |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK JJJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 000 0 1 | B1 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 001 0 1 | F || DECW | -- | -- | NOT | -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 010 0 1 | A1 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 011 0 1 | F || INCW | -- | -- | -- | * | ROL | ASR | ROR |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 100 0 1 | X0 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 101 0 1 | Y0 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 110 0 1 | -- || -- | -- | -- | -- | -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 111 0 1 | Y1 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |
 +-------------+-----++------+------+------+------+------+------+------+------+

 * For 16-bit destinations, "asl" is identical to "lsl". Thus, if a user
 has "asl x0" in his program, it should instead assemble into "lsl x0".
 Always disassembles as "lsl x0".

Chart 3 - Supplemental Data ALU, Destination is "F"

 This chart is used to encode A FEW non-multiply Data ALU instructions
 where the result of the operation is stored in one of the accumulators,
 A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +-------------+-----++---+
 | bbb b b | || KKK
 |
 | iii i i | || ---
 |
 | ttt t t | || |
 |
 | | || |
 |
 | 654 2 0 | || |
 |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK JJJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KK0 000 1 0 | ~F || -- |<<NA>>|<<Tc>>|<<NA>>| -- |<<NA>>| -- |<<NA>>|
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KK1 000 1 0 | Y ||<<NA>>| ADC |<<NA>>|<<Tc>>|<<NA>>| SBC |<<NA>>| -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 001 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 010 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 011 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | LSL | NORM | LSR |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 100 1 0 | X0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |

 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 101 1 0 | Y0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 110 1 0 | -- || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 111 1 0 | Y1 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+

 Note that there are nine rows above. This is because the entry for
 "JJJ" = 000 is broken into two different rows - one where the LSB
 of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
 (source is "Y") .

 Tcc instructions that occupy space on this chart are Tcc instructions
 where the "Z" bit is a "0". This corresponds to Tcc instructions
 of the form "tcc <reg>,F", i.e., without an AGU register transfer.

Chart 4 - Supplemental Data ALU, Destination is "DD"
--

 This chart is used to encode A FEW non-multiply Data ALU instructions
 where the result of the operation is stored in one of the data regs,
 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "FF" bits.

 +-------------+-----++---+
 | bbb b b | || KKK
 |
 | iii i i | || ---
 |
 | ttt t t | || |
 |
 | | || |
 |
 | 654 2 0 | || |
 |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK JJJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KK0 000 1 1 | B1 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 001 1 1 | DD || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 010 1 1 | A1 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 011 1 1 | DD || -- | -- |<<Tc>>|<<Tc>>| -- | LSL | -- | LSR |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 100 1 1 | X0 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 101 1 1 | Y0 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 110 1 1 | -- || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 111 1 1 | Y1 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+

 Tcc instructions that occupy space on this chart are Tcc instructions
 where the "Z" bit is a "1". This corresponds to Tcc instructions
 of the form "tcc <reg>,F r0,r1", i.e., with an AGU register transfer.

yyyyy:
 The "yyyyy" field is used to determine the operand encoding and destination
 operand definitions for data ALU instructions where one source operand
 is not a Data ALU register. It is described as "010" type instructions
 because all instructions in this class begin with "010" in bits 15-13.

 For instructions of this type, the destination is always specified with
 the "fff" field.

 yyyyy Operation

 ----- ------------
 00fff ADD <src>,fff
 10fff SUB <src>,fff
 11fff CMP <src>,fff
 01100 DEC <dst> NOTE: src and dst is a memory location, not a reg
 01101 INC <dst> NOTE: src and dst is a memory location, not a reg
 0111x <Available>

 DALU3OP2 - Shifting and Multiplication Encoding Information
 --

DALU3OP2:

IIII: ()
 Specifies Integer Multiplication, Signed*Uns, and Shifting Instructions

 IIII Operation
 ---- ---------
 1000 MPYsu
 1100 MACsu
 0010 IMPY16
 1001 LSRR (multibit logical right
shift)
 1101 LSRAC (used for shifting 32-bit values)
 0001 ASRR (multibit arithm right
shift)
 0101 ASRAC (multibit arithm right shift w/ acc)
 0011 ASLL or LSLL (multibit arithm left
shift)

 ^^^^
 ||||
 |||+--- Indicates no shifting or shifting
 ||+---- Shift shift dirn and whether LSP goes to DXB1
 |+----- Selects mpy vs mac operation
 +------ Selects signed*signed vs signed*unsigned

 Note: no inversion of multiplier result or rounding is allowed.

 NOTE: All of the above allow FFF as a destination EXCEPT
 LSRAC and ASRAC which only allow F as a destination,
 and LSLL which only allows X0, Y0, and Y1 as destinations.

 Although the LSLL only allows 16-bit destinations, there is
 the ASLL instruction which performs exactly the same operation
 and allows an accumulator as well as a destination.

Single Parallel Move Encodings:
===============================

P1DALU:

x:
kk:
jjj:
 P1DALU operation and source register encodings (xkkjjj)
 x kk jjj
 - -- ---
 0 KK JJJ - KK specifies the arithm operation for non-multiply instrs
 - JJJ specifies one source operand for non-multiply
instrs
 (kk becomes KK when x=0)
 (jjj becomes JJJ when x=0)
 1 LL QQQ - LL specifies the arithm operation for multiply instrs
 - QQQ specifies one source operand for
 multiply instrs
 (kk becomes LL when x=1)
 (jjj becomes QQQ when x=1)

JJJ:
 Specifies the source registers for the "non-multiply" P1DALU class
 of instructions as well as the Tcc instruction.

 JJJ Source register
 --- ---------------
 000 ~F
 001 F (not used by the Tcc instruction)
 01x F (not used by the Tcc instruction)
 01x F (not used by the Tcc instruction)
 100 X0
 101 Y0
 110 (reserved for X1)
 111 Y1

KK: ()

Chart 5 - Single Parallel Move Data ALU, Destination is "F"

 This chart is used to encode all of the non-multiply arithmetic
 operations with a SINGLE PARALLEL MOVE, where the result of the
 operation is stored in one of the accumulators, A or B. In this
 case, the instruction is of the following form
 "NONMPY_DALUOP <src>,F <single_pll_mov>"

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +--------+-----++---------------------------+
 | bbb | || |
 | iii | || KK |
 | ttt | || -- |
 | ... | || |
 | 654 | || |
 +--------+-----++------+------+------+------+
 | KK JJJ | SRC || 00 | 01 | 10 | 11 |
 +========+=====++======+======+======+======+
 | KK 000 | ~F || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 001 | F || DECW | NEG | RND | TST |
 +--------+-----++------+------+------+------+
 | KK 010 | F || -- | ABS | -- | -- |
 +--------+-----++------+------+------+------+
 | KK 011 | F || INCW | CLR | ASL | ASR |
 +========+=====++======+======+======+======+
 | KK 100 | X0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 101 | Y0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 110 | -- || -- | -- | -- | -- |
 +--------+-----++------+------+------+------+
 | KK 111 | Y1 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+

 Note that this chart is simply extraced from the above chart where
 bit_2 == 0 and bit_0 == 0. In this case, only the even values
 within the "KKK" field are retained.

Dual Parallel Read Encodings:
=============================

P2DALU:

x: ()
uu: ()
jj: ()
 P2DALU operation and source register encodings (xuujj)
 x uu jj
 - -- --
 0 UU GG - UU specifies the arithm operation for non-multiply instrs
 - GG specifies one source operand for non-multiply instrs
 (uu becomes UU when x=0)
 (jj becomes GG when x=0)
 1 LL QQ - LL specifies the arithm operation for multiply instrs

 - QQ specifies one source operand for multiply instrs
 (uu becomes LL when x=1)
 (jj becomes QQ when x=1)

GG: ()
UU: ()
 Specifies "non-multiply" P2DALU instructions and operands.
 x UU GG Non-Multiply Operation DALU Source Register
 - -- -- ---------------------- --------------------
 0 00 JJ ADD JJ
 0 10 JJ SUB JJ

 0 01 -- MOVE <none>

 0 11 -- (reserved) <none>

JJ: ()
 Specifies the source registers for the "non-multiply" P2DALU instructions.
 JJ source register
 -- ---------------
 00 X0
 01 Y0
 10 (reserved for X1)
 11 Y1

LL: ()
 LL Multiplication Operation
 -- ------------------------
 00 MPY + (neither operand inverted)
 01 MAC + (neither operand inverted)
 10 MPYR + (neither operand inverted)
 11 MACR + (neither operand inverted)

QQ: ()
 Input registers for the "multiply" P2DALU instructions.
 QQ Multiplier inputs
 -- -----------------
 00 Y0,X0
 01 Y1,X0
 10 (reserved for X1,Y0)
 11 Y1,Y0

vvv: (9,6,0)
 Specifies the destination registers for the dual X memory
 parallel read instruction WITH arithmetic operation.

 vvv 1st read 2nd access
 --- -------- ----------
 000 X:(R0),Y0 X:(R3)+,X0 -
 010 X:(R0),Y0 X:(R3)-,X0 -
 100 X:(R0),Y1 X:(R3)+,X0 -
 110 X:(R0),Y1 X:(R3)-,X0 -

 001 X:(R1),Y0 X:(R3)+,X0 -
 011 X:(R1),Y0 X:(R3)-,X0 -
 101 X:(R1),Y1 X:(R3)+,X0 -
 111 X:(R1),Y1 X:(R3)-,X0 -

 ^^^
 |||
 ||+--- (effectively an "r" bit for 1st read - R0 vs R1)
 |+---- (effectively an "m" bit for 2nd read - (R3)+ vs (R3)-)
 +----- (effectively a "V" bit for 1st read - Y0 vs Y1)

 NOTE: Above table does not show any addressing mode information
 for the 1st read. See the "m" field for this information.
 The above table does contain addressing mode info for the
 second access as seen above.

Move Register Field Definitions:
================================

HHH: destination registers for the "P1DALU X:<ea_m>,HHH" instruction.
 HHH register
 --- --------
 000 X0
 001 Y0
 010 (reserved for X1)
 011 Y1
 100 A
 101 B
 110 A1
 111 B1

RRR: ()
 RRR register
 --- --------
 000 R0
 001 R1
 010 R2
 011 R3
 111 SP

HHHH: destination registers for the "#xx,HHHH" instruction.
 HHHH register
 ---- --------
 0HHH X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 10RR R0, R1, R2, R3
 11NN ND (dst only), N, NOREG (src and dst), (reserved)

DDDDD: - specifies destination registers for "ddddd,DDDDD"
 - specifies source/destination registers for other DDDDD moves
 - NOTE that ordering is different than "ddddd"

 DDDD D register
 ---- - --------
 0HHH 0 X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 10RR 0 R0, R1, R2, R3
 11xx 0 ND (dst only), N, NOREG, (reserved)
 00xx 1 A0, B0, A2, B2
 01xx 1 M01, (res), (res), SP
 1xxx 1 OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR, LC, LA

ddddd: - specifies source registers for the move ddddd,DDDDD instruction.
 - specifies source registers for the DO/REP ddddd instruction.
 - specifies source/destination registers for bitfield instructions
 - NOTE that ordering is different than "DDDDD"

 ddddd register
 ----- --------
 00HHH X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 100RR R0, R1, R2, R3
 101xx (res-ND), N, (res-NOREG), (res)
 010xx A0, B0, A2, B2
 011xx M01, (res), (res), SP
 11xxx OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR, LC, LA

Special registers which need to be detected:
 1110 0 NOREG - Prevents external bus cycle, or perhaps any
 memory cycle from occurring. Required
because
 the chip may not own the bus. Forces access
 internal, or perhaps even disables
prxrd/prxwr.
 Occurs on read from reg only. Note there is
 no register actually present. It applies to
 reads from the register because this is true
 during an LEA where no memory cycle is
desired,
 but this is not true for a TSTW instruction,
 which must actually perform a memory cycle
 and move the data onto the cgdb.
 1100 0 ND - Accesses "N" register but also asserts pmnop.
 Occurs on write to reg only.

 1100 0 ND - Prevents interrupts, force adr onto eab,
 regardless of whether it's on-chip or not.
 Note there is no actual register. Asserts
 a new ctrl signal, pmdram. Occurs on reads
 from reg only. Used to be the DRAM register.
 Must disable xmem writes, similar to reads
 from NOREG. Force the access internal.
 1011 1 HWS - Any reads of this register must "pop" the
 HWS and HWSP. Any writes to this register
 must "push" the HWS and HWSP.

RR: RR register
 -- --------
 00 R0
 01 R1
 10 R2
 11 R3

AGU (Address Generation Unit) Instruction Field Definitions:
==

MM: specifies addressing modes for the "X:<ea_MM>,DDDDD" instruction.
 MM addressing mode
 -- ---------------
 00 (Rn)+ or (SP)+
 01 (Rn)+N or (SP)+N
 10 (Rn)- or (SP)-
 11 (Rn) or (SP) (LEA cannot use this combination)

m: specifies addressing modes of "P1DALU" and "P2DALU"
 m addressing mode
 - ---------------
 0 (Rn)+
 1 (Rn)+N

W:
 W move direction for memory moves
 - -------------------------------
 0 register -> memory
 1 memory -> register

w: w DALU result
 - -----------
 0 written back to memory (not allowed for CMP or SUB instrs)
 1 remains in register

Immediates and Absolute Address Instruction Field Definitions:
==

AAA:
 Upper 3 address bits for JMP, Jcc, and JSR instructions.

BBBBBBB:
 7-bit signed integer. For #xx,HHHH and DALU #xx,F instructions.

BBBBBB:
 6-bit unsigned integer. For DO/REP #xx instruction.

AAAAAA:
 6-bit positive offset for X:(R2+xx) addressing mode.
 Allows positive offsets: 0 to 63

aaaaaa:
 6-bit negative offset for X:(SP-xx) addressing mode.
 Allows negative offsets: -1 to -64

Aaaaaaa:
 7-bit offset for MOVE, DALU & Bitfield using X:(SP-#xx), X:(R2+#xx)
 and Bcc <aa> instructions:
 A = 0 => X:(R2+#xx) allows positive offsets: 0 to 63
 A = 1 => X:(SP-#xx) allows negative offsets: -1 to -64

 For Bcc, "A" specifies the sign-extension.
 RESTRICTION: Aaaaaaa must never be all zeros for the Bcc instruction.

Ppppppp:
 7-bit absolute address for MOVE, DALU, & Bitfield on X:<pp> instr
 It is sign-extended to allow access to both the peripherals and
 the 1st 64 locations in X-memory.

Other Instruction Field Definitions:
====================================

Z: specifies the parallel moves of the address pointers in a Tcc instruction.
 Z move
 - ----
 0 R0->R0 (i.e., no transfer occurs in the AGU unit)
 1 R0->R1 (AGU transfers R0 register to R1 if condition true)

 For the case where Z=0, the assembler will not look for a field
 such as "teq x0,a r0,r0". Instead, the AGU register transfer
 will be suppressed, such as in ""teq x0,a".

E: E instruction
 - -----------
 0 DO
 1 REP

tt: tt instruction
 - -----------
 00 STOP
 01 WAIT
 10 SWI
 11 ILLEGAL

BITFIELD:
UUU: specifies bitfield/branch-on-bit instructions
 UUU operations
 --- ----------
 000 BFCLR
 001 BFSET
 010 BFCHG
 011 MOVE (used by "move #iiii,<ea>")

 100 BFTSTL
 110 BFTSTH
 101 BRCLR (modifies carry bit)
 111 BRSET (modifies carry bit)

 0xx last word = iiiiiiiiiiiiiiii
 1x0 last word = iiiiiiiiiiiiiiii
 1x1 last word = iiiiiiiiUAaaaaaa

 (note: this is the 3rd word, not 2nd, for BF/BR #xxxx,X:xxxx)

 iiiiiiiiiiiiiiii = 16-bit immed mask
 iiiiiiii = 8-bit immed mask for upper or lower byte
 U = 1 selects upper byte
 U = 0 selects lower byte
 Aaaaaaa = 7-bit relative branch field

 Note: UAaaaaaa is not available to the BFTSTH, BFTSTL instrs

 The ANDC, ORC, EORC, and NOTC are instructions which fall directly
 onto the bitfield instructions. They are mapped as follows:

 ANDC is identical to a BFCLR with the mask inverted
 ORC is identical to a BFSET (mask not inverted)
 EORC is identical to a BFCHG (mask not inverted)
 NOTC is identical to a BFCHG with the mask set to $FFFF

CC-C: ()
 Specifies conditions for the Tcc instructions:
 (in this case, "CC" falls onto C10 of CCCC, "C" falls onto C2, C3 is "0")

 CC-C condition
 ---- ---------
 00 0 cc
 01 0 cs
 10 0 ne
 11 0 eq

 00 1 ge
 01 1 lt
 10 1 gt
 11 1 le

CCCC: ()
 Specifies conditions for the Jcc, JScc, and Bcc instructions

 CCCC condition - for encode7
 ---- ---------
 0000 cc (same as "hs", unsigned higher or same)
 0001 cs (same as "lo", unsigned lower)
 0010 ne
 0011 eq
 0100 ge
 0101 lt
 0110 gt
 0111 le

 10** ALWAYS TRUE condition (PLAs decode this)

 1001 ALWAYS - JMP, BRA, JSR (value used by assembler)
 1011 (reserved -could be used for delayed)
 1010 (reserved)
 1000 (reserved)
 1100 hi (unsigned higher)
 1101 ls (unsigned lower or same)
 1110 nn
 1111 nr

Unusual Instruction Encodings:
==============================
 Encoding of "ADD fff,X:<aa>" and "ADD fff,X:(sp-xx)":
 There is an unusual trick used to encode these two instructions.
 What is so unusual is that the first word of the two word
 "ADD/SUB/CMP fff,X:<aa>" instruction is identical to the one
 word encoding of the "ADD/SUB/CMP X:<aa>,fff" instruction.
 It is also true the first word of the two word
 "ADD/SUB/CMP fff,X:(sp-xx)" instruction is identical to the one
 word encoding of the "ADD/SUB/CMP X:(sp-xx),fff" instruction.

 What makes these instructions differ is the encoding of the instruction
 immediately following the first word. The rules are listed below.

 Encoding Rules:

 ADD X:<aa>,fff:
 - 1st word - Simply uses the one word encoding for ADD X:<aa>,fff
 - 2nd word - Any valid DSP56800 instruction, which by definition
 will not be the following reserved hex value:
$E042.
 Note that this value is reserved in the DSP56800
 bit encoding map.

 ADD X:(SP-xx),fff:
 - 1st word - Simply uses the one word encoding for
 ADD X:(SP-xx),fff
 - 2nd word - Any valid DSP56800 instruction, which by definition
 will not be the following reserved hex value:
$E042.
 Note that this value is reserved in the DSP56800
 bit encoding map.

 ADD X:xxxx,fff:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff

 with the "w" bit set to "1"
 - 2nd word - second word of encoding contains the 16-bit
 absolute address

 ADD fff,X:<aa>:
 - 1st word - 1st word of this instruction uses the one word
 encoding for the ADD X:<aa>,fff instruction.
 - 2nd word - 2nd word of this instruction is simply set to $E042.

 ADD fff,X:(SP-xx):
 - 1st word - 1st word of this instruction uses the one word
 encoding for the ADD X:(SP-xx),fff instruction.
 - 2nd word - 2nd word of this instruction is simply set to $E042.

 ADD fff,X:xxxx:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff
 with the "w" bit set to "0"
 - 2nd word - second word of the instruction contains the 16-bit
 absolute address

 Thus, the presence of the hex value $E042 in the instruction
 immediately after a "ADD X:<aa>,fff" or "ADD X:(sp-xx),fff"
 indicates that the instruction is really an "ADD fff,X:<aa>" or
 "ADD fff,X:(sp-xx)" instruction. These later two instructions
 encode as two word instructions using the technique described above.

 Note that this encoding (where the destination is a memory
 location) is NOT allowed for the SUB or CMP instructions.
 It is only allowed for the ADD instruction.

Encoding of LEA:
 There is a trick used for encoding the LEA instruction. The trick
 is used in several different places within the opcode map and is
 simply this - anytime a MOVE instruction uses "NOREG" (located in the
 HHHH or DDDDD field) as a source register, the instruction is no longer
 interpreted as a MOVE instruction. Instead it operates as an LEA
 instruction. Thus, the syntax for the instruction available to the
 user is "LEA", but the actual bit encoding uses the MOVE instruction
 where the source register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 LEA (Rn)+ => MOVE NOREG,X:(Rn)+
 LEA (Rn)- => MOVE NOREG,X:(Rn)-
 LEA (Rn)+N => MOVE NOREG,X:(Rn)+N
 LEA (R2+xx) => MOVE NOREG,X:(R2+xx)
 LEA (Rn+xxxx) => MOVE NOREG,X:(Rn+xxxx)

 LEA (SP)+ => MOVE NOREG,X:(SP)+
 LEA (SP)- => MOVE NOREG,X:(SP)-
 LEA (SP)+N => MOVE NOREG,X:(SP)+N
 LEA (SP-xx) => MOVE NOREG,X:(SP-xx)
 LEA (SP+xxxx) => MOVE NOREG,X:(SP+xxxx)

 CAREFUL: LEA must NOT write to a memory location!
 NOTE: LEA not allowed for (Rn) or (SP).

Encoding of TSTW:
 There is a trick used for encoding the TSTW instruction. The trick
 is used in several different places within the opcode map and is
 simply this - anytime a MOVE instruction uses "NOREG" (located in the
 HHHH or DDDDD field) as a dest register, the instruction is no longer
 interpreted as a MOVE instruction. Instead it operates as a TSTW
 instruction. Thus, the syntax for the instruction available to the
 user is "TSTW", but the actual bit encoding uses the MOVE instruction
 where the destination register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 TSTW X:<aa> => MOVE X:<aa>,NOREG
 TSTW X:<pp> => MOVE X:<pp>,NOREG
 TSTW X:xxxx => MOVE X:xxxx,NOREG

 TSTW X:(Rn) => MOVE X:(Rn),NOREG
 TSTW X:(Rn)+ => MOVE X:(Rn)+,NOREG
 TSTW X:(Rn)- => MOVE X:(Rn)-,NOREG
 TSTW X:(Rn)+N => MOVE X:(Rn)+N,NOREG
 TSTW X:(Rn+N) => MOVE X:(Rn+N),NOREG
 TSTW X:(Rn+xxxx) => MOVE X:(Rn+xxxx),NOREG
 TSTW X:(R2+xx) => MOVE X:(R2+xx),NOREG
 TSTW X:(SP) => MOVE X:(SP),NOREG
 TSTW X:(SP)+ => MOVE X:(SP)+,NOREG
 TSTW X:(SP)- => MOVE X:(SP)-,NOREG
 TSTW X:(SP)+N => MOVE X:(SP)+N,NOREG
 TSTW X:(SP+N) => MOVE X:(SP+N),NOREG
 TSTW X:(SP+xxxx) => MOVE X:(SP+xxxx),NOREG
 TSTW X:(SP-xx) => MOVE X:(SP-xx),NOREG
 TSTW <register> => MOVE ddddd,NOREG

 NOTE: TSTW (Rn)- is not encoded in this manner, but instead
 has its own encoding allocated to it.

 NOTE: TSTW HWS is NOT allowed. All other on-chip registers
 are allowed.

 IMPORTANT NOTE: TSTW can be done on any other instruction which
 allows a move to NOREG. Note this doesn't make sense for LEA.

 NOTE: TSTW F (operates on saturated 16 bits) differs
 from TST F (operates on full 36/32 bit accumulator)

 NOTE: TSTW P:() is NOT allowed.

Encoding of POP:
 The encoding of the POP follows the simple rules below.

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 POP <reg> => MOVE X:(SP)-,<reg>
 POP => LEA (SP)-

 In the first case, a register is explicitely mentioned, whereas in
 the second case, no register is specified, i.e., just removing a value
 from the stack.

 NOTE: There is no PUSH instruction, but it is easy to write
 a simple two word macro for PUSH.

Encoding of CLR:
 The encoding for a CLR on anything other than A or B
 should encode into the following: "move #0,<reg>".
 Allows the following instructions to be recognized by the assembler:
 CLR DD (DD = x0,y0,y1)
 CLR F1 (F1 = a1,b1)
 CLR RR (DD = r0,r1,r2,r3)
 CLR N
 Note that no parallel move is allowed with these.
 Note also that CLR F sets the condition codes,
 whereas CLR on DD, F1, RR, or N does NOT set the condition codes.

Encoding of ENDDO:
 The ENDDO instruction will be encoded as "MOV HWS,NOREG".

Encoding of the Tcc Instruction:

The Tcc instruction is somewhat difficult to understand because it's encoding
overlays the encodings of some Data ALU instructions when Bit 2 of the opcode
is a "1". It is overlayed obviously so that for a particular bit pattern,
there is only one unique instruction present. Reference to this can be seen
with the "<<Tc>>" entry found within Charts 3 and 4 below. Use the definition

 "0110 11CC FJJJ 01CZ Tcc JJJ,F [R0->R1]"

to encode this instruction.

==
==

Restrictions:

 - The HWS register cannot be specified as the loop count for a DO or
 REP instruction. Likewise, no bitfield operations (BFTSTH, BFTSTL,
 BFSET, BFCLR, BFCHG, BRSET, BRCLR) can operate on the HWS register.
 Note, however, that all other instructions which access ddddd, including
 "move #xxxx,HWS" and TSTW, can operate on the HWS register.
 - The following registers cannot be specified as the loop count for a DO or
 REP instruction - HWS, M01, SR, OMR.
 - The "lea" instruction does NOT allow the (Rn) addressing mode, i.e.,
 it only allows (Rn)+, (Rn)-, (Rn)+N, (Rn+xxxx), (R2+xx), and (SP-xx)
 - Cannot do a bitfield set/clr/change on "ND" register, i.e., the bitfield
 instruction cannot be immediately followed by an instruction which uses
 the "N" register in an addressing mode.
 bfclr #$1234,n
 move x:(r0+n),x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Cannot move a long immediate value to the "ND" register. This is because
 the long immediate move is implemented similar to the bitfield instrs.
 move #$1234,n ; long immediate
 move x:(r0+n),x0 ; ILLEGAL - needs one NOP

 move #$4,n ; short immediate, uses ND
register
 move x:(r0+n),x0 ; ALLOWED since uses short immediate
 - The value "0000000" is not allowed for Bcc.
 In addition, this same value is not allowed as the relative offset
 for a BRSET or BRCLR instruction.
 - The value "0" is not allowed for the DO #xx instruction.
 If this case is encountered by the assembler, it should not be accepted.
 - Jumps to LA and LA-1 of a hardware loop are not allowed. This also
 applies to the BRSET and BRCLR instructions.
 - A NORM instruction cannot be immediately followed by an instruction
 which uses the Address ALU register modified by the NORM instruction
 in an addressing mode.
 norm r0,a
 move x:(r0)+,x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Only positive values less than 8192 can be moved to the LC register.
 - Cannot REP on any multiword instruction or any instruction which
 performs a P:() memory move.
 - Cannot REP on any instruction not allowed on the DSP56100.
 - IF a MOVE or bitfield instruction changes the value in R0-R3 or SP,
 then the contents of the register are not available for use until the
 second following instruction, i.e., the immediately following instruction
 should not use the modified register to access X memory or update an
 address. This restriction does NOT apply to the N register or the
 (Rn+xxxx) addressing mode as discussed below.
 - For the case of nested looping, it is required that there are at least
 two instruction cycles after the pop of the LC and LA registers before
 the instruction at LA for the outer loop.
 - A hardware DO loop can never cross a 64K program memory boundary, i.e.,
 the DO instruction as well as the instruction at LA must both reside
 in the same 64K program memory page.
 - Jcc, JMP, Bcc, BRA, JSR, BRSET or BRCLR instructions are not allowed in
 the last two locations of a hardware do loop, i.e., at LA, and LA-1.
 This also means that a two word Jcc, JMP, or JSR instruction may not have
 its first word at LA-2, since its second word would then be at LA-1, which
 is not allowed.

Restrictions Removed:

 - The following instruction sequence is NOW ALLOWED:
 move <>,lc ; move anything to LC reg
 do lc,label ; immediately followed by DO

 This was not allowed on the 56100 family due to its internal pipeline.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in following
instr
 move X:(Rn+xxxx),<> ; OK, no NOP required!

 move <>,Rn ; same Rn as in following
instr
 move <>,X:(Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any move with the X:(Rn+xxxx) or X:(SP+xxxx) addressing mode
 is already a 3 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in
following instr
 lea (Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any lea with the (Rn+xxxx) or (SP+xxxx) addressing mode
 is already a 2 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,N
 move X:(Rn+N),<> ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn+N) ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn)+N ; OK, no NOP required!

 move <>,N
 move X:(Rn)+N,<> ; OK, no NOP required!

 In this case, there WILL be an extra instruction cycle inserted
 and the assembler will use the ND register, not the N register.

	Application Note: Machine Code Programming
	Assembler Programming
	CODE functions
	CODE-SUB functions
	CODE-INT functions
	Register Usage
	Calling High-Level Words from Machine Code
	Appendix: DSP56F805 Instruction Encoding

