Application Note: Machine Code Programming

IsoMax allows individual words to be written in machine code as well as “high-level” language code. Such words
are indistinguishable in function from high-level words, and may be used freely in application programs and state
machines.

Assembler Programming

The IsoPod uses the Motorola DSP56F805 microprocessor. The machine language of this processor is described in
Motorola's DSP56800 16-Bit Digital Signal Processor Family Manual, available at

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

IsoMax does not include a symbolic assembler for this processor. You must use an external assembler to convert
your program to the equivalent hexadecimal machine code, and then insert these numeric opcodes and operands into
your IsoMax source code.' For an example, let's use an assembler routine to stop Timer C2:

;. Ti mer/ Count er
Timer control register

000X XXXX XXXX XXXX = no count
andc #$1FFF, X: $0D56 ; TMRC2_CTRL

; Timer status & control register

; Clear TCF flag, clear interrupt enable flag
bfclr #$8000, X: $0D57 ; TMRC2_SCR clear TCF
bfclr #3$4000, X: $0D57 ; TMRC2_SCR clear TCFIE

Translated to machine code, this is:

80F4 andc #$1FFF, X: $0D56
0D56
E000
80F4 bfclr #$8000, X: $0D57
0D57
8000
80F4 bfclr #$4000, X: $0D57
0D57
4000

To compile this manually into an IsoMax word, you must append each hexadecimal value to the dictionary with the
P, operator. (The “P” refers to Program space,where all machine code must reside.) You can put more than one
value per line:

80F4 P, 0D56 P, EO00 P,
80F4 P, 0D57 P, 8000 P,
80F4 P, 0D57 P, 4000 P,

All that remains is to add this as a word to the [soMax dictionary, and to return from the assembler code to IsoMax.
There are three ways to do this: with CODE, CODE- SUB, and CODE- | NT.

"If you wish to translate your programs manually to machine code, a summary chart of DSP56800 instruction
encoding is given at the end of this application note.

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

CODE functions

The special word CODE defines a machine language word as follows:
CODE wor d- nane
(machine language for your word)

(machine language for JMP NEXT)
END- CODE

Machine code words that are created with CODE must return to IsoMax by performing a jump to the special address
NEXT. In IsoMax versions 0.52 and higher, this is address $0080. Earlier versions of IsoMax do not support NEXT
and you must use CODE-SUB, described below, to write machine code words.

An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080, and our example STOP-
Tl MERC2 word could be written as follows:

HEX
CODE STOP- TI MERC2
80F4 P, 0D56 P, EO00 P,
80F4 P, 0D57 P, 8000 P,
80F4 P, 0D57 P, 4000 P,
E984 P, 0080 P, (JMP NEXT)
END- CCDE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

CODE-SUB functions

The special word CODE- SUB is just like CODE, except that the machine code returns to IsoMax with an ordinary
RTS instruction. This can be useful if you need to write a machine code routine that can be called both from IsoMax
and from other machine code routines. It's also useful if the NEXT address is not available (as in IsoMax versions
prior to 0.52). The syntax is similar to CODE:

CODE- SUB wor d- nane
(machine language for your word)

(machine language for RTS)
END- CODE

An RTS instruction is SEDDS, so STOP- TI MERC2 could be written with CODE- SUB as follows:

HEX

CODE- SUB STOP- TI MERC2
80F4 P, 0D56 P, E000 P,
80F4 P, 0D57 P, 8000 P,
80F4 P, 0D57 P, 4000 P,
EDD8 P, (RTS)

END- CODE

This example will work in all versions of IsoMax.

CODE-INT functions

CODE- | NT is just like CODE- SUB, except that the machine code returns to IsoMax with an RTI (Return from
Interrupt) instruction, SEDD9. This is useful if you need to write a machine code interrupt handler that can also be
called directly from IsoMax. CODE-INT is only available on IsoMax versions 0.52 and later.
HEX
CODE- | NT STOP- TI MERC2

80F4 P, 0D56 P, EO00 P,

80F4 P, 0D57 P, 8000 P,

80F4 P, 0D57 P, 4000 P,

EDDO P, (RTI)
END- CODE

To obtain the address of the machine code after it is compiled, use the phrase
" word-nanme CFA 2+

Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD before trying to obtain the
address of the machine code. EEWORD will change this address.

Register Usage

In the current version of [soMax software, all DSP56800 address and data registers may be used in your CODE and
CODE- SUB words. You need not preserve R0-R3, X0, YO0, Y1, A, B, or N. Do not change the “mode” registers
MO1 or OMR, and do not change the stack pointer SP.

Future versions of IsoMax may add more restrictions on register use. If you are concerned about compatibility with
future kernels, you should save and restore all registers that your machine code will use.

CODE- | NT words are expected to be called from interrupts, and so they should save any registers that they use.

Calling High-Level Words from Machine Code

You can call a high-level [soMax word from within a machine-code subroutine. This is done by calling the special
subroutine ATO4 with the address of the word you want to execute.” This address must be a Code Field Address
(CFA) and is obtained with the phrase

wor d- nanme CFA

This address must be passed in register RO. You can load a value into RO with the machine instruction $87D0,
$xxxx (where xxxx is the value to be loaded).

The address of the ATO4 routine can be obtained from a constant named ATO4. You can use this constant directly
when building machine code. The opcode for a JSR instruction is $E9C8, $aaaa where aaaa is an absolute address.
So, to write a CODE- SUB routine that calls the IsoMax word DUP, you could write:

HEX

CODE- SUB NEVDUP
87D0 P, ' DUP CFA P, (move DUP CFA to RO)
E9C8 P, ATO4 P, (JSR ATOZ)
EDDS P, (RTS)

END- CODE

Observe that the phrases ' DUP CFA and ATO4 are used within the CODE-SUB to generate the proper addresses
where required.

’The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

Appendix: DSP56F805 Instruction Encoding

DSP56800 OPCODE ENCODI NG

Understanding entries in the above encodi ng:

A typical
(8b) 011l

1101

FQQ

11FF

(10)

entry in the encoding files |ooks like this:

DALU3OP2 QQQ FFF

(1) 00V kHHH Fjjj xnRR (14) P1DALU jjj,F X: <ea_np, HHH

(2) 010y yOyy vy*pp pppp (11-*) ADD SUB/ CVP/ I NC/ DEC X: <aa>[,fff]

(3) 010y yOyy y+aa aaaa (11-*) ADD/ SUB/ CVP/INC/DEC X: (SP-xx)[,fff]

(4) 010y ylyy y00B BBBB (10) ADD/ SUB/ C\VP #<0- 31>, fff

(5a) 010y ylyy yl10- ---- (5-2) ADD/ SUB/ CMP #xxxX, fff

(5b) 010y ylyy ywll -1-- (6-2) ADD/ SUB/ CMP/ | NC/ DEC X: xxxx[, fff]

(7) 011u uOvl Fvjj xmv (10) P2DALU jj,F X <ea_np,reg X <ea_v>, X0
(8a) 011L L1L- FQQQ 10FF (9) DALU3SOP QQ FFF

(8b) 0111 111l FQQQ 11FF (10) DALU3OP2 QQQ, FFF

(8c) 011K K1K- FO0O0 0h0O (4) DALU2OPF ~F,F (KKK = KKO) (h=1: Tcc)
(8d) 011K K1K- FO000 0h00 (4) DALU2CPY Y,F (KKK = KK1) (h=1 used)
(8e) 011K K1K- FO000 OhFl1 (5) DALU20PB1 BL, FF (h=1: Tcc)
(8f) 011K K1K- F010 OhF1 (5) DALU2OPA1 A1, FF (h=1: Tcc)
(89) 011K K1K- FOgg O0hOO (6) DALULOPF F (gq !'= 00)

(h=1 used)

(8h) 011K K1K- FO0gl OhF1 (6) DALULOPFF FF

(h=1: LSL,LSR

(8i) 011K Ki1K- F1JJ OhFF (8) DALU20RPJJ JJ, FFF (h=1: DV, Tcc)
(8j) 0110 11CC FKJJJ 01CzZ (8) Tcc JJJ,F [RO->R1] (h=1:
Tcc)

(9) 10\ HHHH OPpp pppp (12) MOVE X: <Ppp>, REG

(10a) 10WM HHHH 1*AA AAAA (11) MOVE X: (R2+xx) , REG

(10b) 10\ HHHH 1+aa aaaa (11) MOVE X: (SP- xx) , REG

(11) 11w DDDD DO-M RMRR (12) MOVE X: <ea_Mw>, DDDDD

(12) 11w DDDD D1-0 RIRR (10) MOVE X: (Rn+N), DDDDD

(13) 11w DDDD D1-0 RORR (10-2) MOVE X (Rn+xxxx), DDDDD

(14) 11w DDDD D1-1 -1-- (7-2) MOVE X: <abs_adr >, DDDDD

(15) 1000 DDDD DOOd dddd (10) MOVE ddddd, DDDDD

(16) 1000 1110 *011 OORR (2) TSTW (Rn) -

(17) 1000 UUU+ 110d dddd (8-2) Bl TFI ELD DDDDD; MOVE #xxxx, DDDDD
(18) 1000 UWUUO 111+ -+-- (3-3) Bl TFI ELD X: XXXX; MOVE #XXXX, X: XXXX
(19a) 1010 UUUWO 1+aa aaaa (9-2) Bl TFI ELD X: (SP-xx); MOE #xxxX, X: (SP- xx)
(19Db) 1010 UUW 1*AA AAAA (9-2) Bl TFI ELD X: (R2+xx); MOVE #xxxX, X: (R2+xx)
(20) 1010 UuUl 1Ppp pppp (10-2) BITFIELD X <Ppp>; MOVE #xxxx, X: <Ppp>
(21) 1010 CCCC 0OAaa aaaa (11) Bcc <aa>, BRA

(22) 1100 HHHH *BBB BBBB (11) MOVE #xx, HHHH

(23) 1100 11E0 1*BB BBBB (7-%) DO REP #xx

(24) 1100 11E0 11-d dddd (6-*) DO REP ddddd

(25a) 1110 CCCC 10A- -1AA (7-2) Jcc, JMP XXXXX

(25b) 1110 1001 11A0 10AA (*-2) JSR XXXXX

(26) 1110 1101 11-1 10-0 (O) RTS

(27) 1110 1101 11-1 10-1 (0) RTI

(29) 1110 HHHH *OW *nRR (8) MOVE P: <ea_nw, HHHH

(30) 1110 ---- -1-- 0000 (O) NOP

(31) 1110 ---- -1-- 0001 (0) DEBUG

(--) 1110 ---- -1-- 0010 (0) ($E042 -reserved for "ADD <reg>, <nenp")
(32) 1110 ---- -1-- 01tt (2) STOP, WAIT, SW, |LLEGAL

(--) 1100 ---- 111- ---- (9) <Avai | abl e Hol e>

(--) 11120 ---- 111- ---- (9) <Avai | abl e Hol e>

(--) 1110 ---- 01-- ---- (10) <Avai | abl e Hol e>

" \ /
| e ARCRETRERE | |

| | | +---- (see #1 bel ow)
| | R (see #2 bel ow)

| LR R (see #3 bel ow)
e (see #4 bel ow)

#1: This field gives the name of the instruction or of a class of
instructions which are encoded with the bit pattern specified in #3.

An exanpl e of where this field contains an instruction is for the
"TSTW(Rn)-" instruction. In this case, only the operands of the
instruction are encoded with the bits in #3 bel ow

An exanpl e of where this field contains a class of instructions

is given in the exanpl e above "DALU3OP2 QQQ FFF'. In this case,
the entry DALU3OP2 represents a class of instructions, and the
instruction selected within this class is selected by the Ill1l field

within the encoding specified in #2.

Instruction classes such as "DALU3OP2" can be seen by searching
inthis file for the following field - "DALU3OP2:", where the field
is located in the very first character of the |ine.

#2: The nunber here indicates how many bits are required to encode
this instruction. For the exanple shown above, 10 bits are
required to hold the following bits - 1111 FQQQFF. The infornmation
inthis particular field is useful to the design group.

If the nunber in this field is followed by a "-2" or "-3", the "-2"
is used to indicate a two word instruction, and the "-3" is used
to indicate a three word instruction.

For the case of the "ADD/ SUB/ CWP/ | NC/ DEC X: <aa>[,fff]" instruction

whi ch uses "(11-*)", this indicates that this class of instructions
can vary in nunber of instruction words. For this particular exanple,
this can be seen nore clearly in the section entitled "Unusual
Instruction Encodi ngs" | ocated within this docunent.

#3: This portion represents the 16 opcode bits of the instruction.
For single word instructions, it contains the entire one word
16-bit opcode. For multiword instructions, it contains the
first word for the instruction.

The exanpl e above contains the following fields within the instruction:
1111, FFF,

Note that although there are four | bits to formthe "IlI1" field, these

bits are not necessarily all next to each other. This is also the case

for the three bits conprising the "FFF" field.

#4: The nunber here gives a unique nunber to this particular instruction
or class of instructions. This is used sinply for identification
pur poses.

Notes for Above Encodi ng:

1. Were a "*" is present in a bit in the encoding, this neans the PLAs
often use this bit to line up in a field, but that the assenbler should

al ways see this as a "0". \Were a "+" is present, it is simlar, but
assenbles as a "1". A "-" is ignored by the PLAs and assenbled as a "0".
2. It is inmportant to note that several instructions are not found

on the first page of the encoding, which sunmarizes the entire
instruction set. These instructions are instead found in the
section entitled "Unusual Instruction Encodings" |ocated within

this docunent. Instructions in this section include:
- ADD fff, X <aa>:
- ADD fff, X (SP-xx):
- ADD fff, X: xxxx:
- LEA
- TSTW
- POP

- CLR (although CLR is also encoded in the Data ALU secti on)
- ENDDO

See this section to see how these instructions are encoded.

3. The use of the bit pattern |abelled
"($E042 -reserved for "ADD <reg>, <nenp")"
is explained in nore detail in the "Unusual Instruction Encodi ngs"
section. It is not an instruction in itself, but rather enables
an encoding trick discussed for the ADD instruction in that section.

Understanding the 2 and 1 Operand Data ALU Encodi ngs
The Data ALU operations were encoded in a manner which is not straightforward.
The three operand instructions were relatively straightforward, but the
encodi ng of the two and one operand instructions was nore difficult.

More information is presented at the field definitions for "KKK' and "JJJ".
This is the best place to clearly understand the Data ALU encodi ngs.

(Al'so see the encoding information |ocated at the "KKK" field.)

Data ALU Source and Destination Register Field Definitions:

F F Destination Accunul at or
0 A
1 B

~F:

"~F" is a unique notation used in some cases to signify the source
register in a DALU operation. It's exact definition is as follows:
If "F" is the "A" accunul ator, Then "~F" is the "B" accunul ator.
If "F' is the "B" accumul ator, Then "~F" is the "A" accumul ator.

FF: FF Destinati on Regi ster
00 X0 (NOTE: not all DALU instrs can have this as a destination)
10 (reserved)
01 YO (NOTE: not all DALU instrs can have this as a destination)
11 Y1l (NOTE: not all DALU instrs can have this as a destination)
FFF: FFF Destinati on Regi ster
000 A
100 B
001 X0 (NOTE: not all DALU instrs can have this as a destination)
101 (reserved)
011 YO (NOTE: not all DALU instrs can have this as a destination)
111 Y1 (NOTE: not all DALU instrs can have this as a destination)

NOTE: The MPY, MAC, MPYR, and MACR instructions allow x0, yO,
or yl as a destination. FFF=FF1 IS allowed for the case
of a negated product: -yO0,x0, FFF for exanple is all owed.
Al so, MPYsu, MACsu, | MPY16, LSRR, ASRR, and ASLL all ow
FFF as a destination, but the ASRAC & LSRAC instructions
only allow F, and LSLL only allows DD as destinations.

Al 't hough the LSLL only allows 16-bit destinations, there is
the ASLL instruction which perforns exactly the same operation
and allows an accunmul ator as well as a destination.

fff: fff Destinati on Regi ster
000 A (ADDY SuB/ CVP onl y)
001 B (ADD/ SuB/ CvP onl y)
100 X0 (ADD/ SUB/ CWP onl y)
101 (reserved for X1)
110 YO (ADD/ SUB/ CWP onl y)

111 Y1 (ADD/ SUB/ CVP onl y)

This field specifies two input registers for instructions in the
DALU3COP, DALU3OP2, and P1DALU instruction classes. There are sone
instructions where the ordering of the two source operands is inportant
and sone where the ordering is uninportant.

Three different cases are presented bel ow for instructions using the

QR field. Some exanples are also included for clarification.
Note that the bottom 4 entries are designed to overlay the "QQ' field.

1.

amount
amount
Q=001
Q=101
2.
3.

"QQQ' definition for: ASRR ASLL, LSRR, LSLL, ASRAC, & LSRAC instrs

QN Shifter inputs (nust be in this order)
000 (reserved for X1, Y1)

001 B1, Y1

010 Y0, YO

011 Al, YO

100 Y0, X0

101 Y1, X0

110 (reserved for X1, YO0)

111 Y1, YO

For Multi-bit shift instructions:
- 1st reg specified is value to be shifted
- 2nd reg specified is shift count (uses 4 LSBs)

Exanpl es of valid Multi-bit shift instructions:
asl| bl,yl, a ; bl is value to be shifted, yl is shift

asrr y1,x0,b ; Yyl is value to be shifted, x0 is shift
Exanpl es of I NVALID Multi-bit shift instructions:
asll yl1,bl,a ; Not allowed - bl nust be first for

asrr x0,yl, b ; Not allowed - yl1 nmust be first for

"QQQ' definition for: MPYsu and MACsu instrs

(000) Mul tiplier inputs (must be in this order)
000 (reserved for Y1, X1)

001 Y1, B1

010 YO, YO

011 Y0, Al

100 X0, YO

101 X0, Y1

110 (reserved for YO, X1)

111 YO, Y1

For MPYsu or MACsu instructions:
- 1st reg specified in QQQ above is "signed" val ue
- 2nd reg specified in QQQ above is "unsigned" val ue

Exanpl es of valid MPYsu and MACsu instructions:

mpysu y1, bl, a ; Yyl is signed, bl unsigned, QX = 001
macsu x0,yl, b ; X0 is signed, yl unsigned, QXQ = 101
Exanpl es of | NVALI D MPYsu and MACsu i nstructions:
mpysu bl,yl, a ; Not allowed - yl1 must be signed for QQQ=001
macsu y1, x0, b ; Not allowed - x0O must be signed for QQQ=101

The Multi-bit shift instructions include:
ASRR, ASLL, LSRR, LSLL, ASRAC, and LSRAC

"QQQ' definition for: Al other instructions using "QX
QN Mul tiplier inputs Al so Accepted by Assenbl er

000 (reserved for Y1, X1) (reserved for X1, Y1)
001 Y1, Bl B1, Y1
010 YO, YO YO, YO
011 Y0, Al Al, YO
100 X0, YO YO, X0
101 X0, Y1 Y1, X0
110 (reserved for YO, X1) (reserved for X1, YO0)
111 Y0, Y1 Y1, YO
For all other of these instructions:
- operands can be specified in either order
Exanpl es of valid MPY and MAC instructions:
nmpy yl,bl,a ; Operands are: yl and bl (ordering uninpt)
nmy bl,y1, a ; Operands are: yl and bl (ordering uninpt)
nac x0,y1, b ; Operands are: yl and x0 (ordering uninpt)
mac y1, x0, b ; Operands are: yl and xO0 (ordering uninpt)

NOTE: If the source operand ordering is incorrect, then the assenbler

must flag this as an error.

Dat a- Al u Opcode Field Definitions:

q: used to specify "non-nmultiply" one operand DALU P1DALU i nstructions.
See the "KKK" field definition bel ow
qq: used to specify "non-nultiply" one operand DALU P1DALU instructions.
See the "KKK" field definition bel ow.
DALU3CP
LLL: LLL Mul tiplication Operation
000 MPY + (nei ther operand inverted)
001 MPY - (one operand i nverted)
010 MAC + (nei ther operand inverted)
011 MAC - (one operand i nverted)
100 MPYR + (nei ther operand inverted)
101 MPYR - (one operand i nverted)
110 MACR + (nei ther operand inverted)
111 MACR - (one operand inverted)
h: (2)
The "h" bit, when set to a "1" is used to encode the follow ng
non-nul ti ply DALU instructions:
- ADC, SBC
- NORM RO
- LSL, LSR
- DV
For exact details on this, see the "KKK" field definition bel ow
DALU2OPF:
DALU20OPY:
DALU20OPBL:
DALU2OPAL:
DALULOPF:
DALULOPFF:
DALU2CPJ J:
KKK: ()

The KKK fields cannot be uniquely decoded wi t hout
val ues in sone other

bits of the opcode.

In the bel ow charts,

| ooking at the
t he

KKK field holds many different encodi ngs dependi ng on the val ues
in bits 6-4, what was previously called the JJJ field,
whi ch was previously |abelled as "h".
now been renoved and this chart now contains the information
previously held by these bits.

and bit 2,
The JJJ and h fields have

Four different charts are presented bel ow, where the four charts
in bits 2 and 0

correspond to different values "00, 01, and 11"

of the opcode.

10,

Note that the KKK entries are nunbered in an ascendi ng order

fromO to 7.

encoding file (encode8) so the entries in the chart wll

This also differs fromthe nunbering in the original
now appear

to be in a different order.

Not ati on for

t he bel ow charts:

is occupied

<<NA>> - Indicates field is not available for any instruction
<<Tc>> - Indicates space is not avail abl e because it
by the Tcc instruction.
~F - Indicates source is the accunul ator not used as the dest

Indicates field is unused

Chart 1 - Basic Data ALU, Destination is "F"
This chart is used to encode MOST non-multiply Data ALU instructions
where the result of the operation is stored in one of the accunul ators,
Aor B, i.e. is of the form "NONWY_DALUOP <src>, F".
This chart encodes both the arithnetic operation and source register
for the operation. The destination is encoded with the "F" bit.
S [S +
| bbb b b | | KKK
I
| [A | ---
I
| ttt t t | | [
I
I e I | I I
| 654 2 0 | | [
I
S oo R T oo - E oo - E oo - oo - oo - +
| KKK JJJ h F| SRC|| 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111 |
+ + ++ + + + + + + + +
| KKO 000 0 O | ~F || ADD |<<NA>>| TFR |<<NA>>| SUB | <<NA>>| CMP | <<NA>>|
R R R S RN S RN S R oo RN +
| KKI 000 0 O | Y ||<<NA>> ADD |<<NA>>| -- | <<NA>>| SUB | <<NA>>| -- |
R R R S RN S RN S R oo RN +
| KKK 001 0 O | || DECW]| -- | NEG | NOT | RND | -- | TST | --
R R R S RN S RN S R oo oo - +
| KKKoiooo| F || -- | -- | ABS | -- | -- | -- | -- | --
R R R S RN S RN S R oo oo - +
| KKK011 00| F || INCW]| -- | CLR | -- | ASL | ROL | ASR | ROR |
+ + ++ + + + + + + + +
| KKK100 0O | X0 || ADD | OR | TFR | -- | SUB | AND | CW | EOR |
R R R S RN S RN S R oo RN +
| KKK101 00| YO || ADD | OR | TFR | -- | SUB | AND | CW | EOR |
R R R S RN S RN S R oo RN +
| KKK 110 00 | -- || == | = | -- | -- | -- | -- |- -
R R R S RN S RN S R oo oo - +
| KKK111 00| Y1 || ADD | OR | TFR | -- | SUB | AND | CW | EOR |
R R R S RN S RN S R oo RN +
Note that there are nine rows above. This is because the entry for
"JJJ" = 000 is broken into two different rows - one where the LSB
of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
(source is "Y")
Chart 2 - Basic Data ALU, Destination is "DD'

This chart

is used to encode MOST non-multiply Data ALU instructions

where the result of the operation is stored in one of the data regs,

X0, YO or Y1, i.e.

is of the form "NONWPY_DALUOP <src>, DD'.

This chart encodes both the arithnetic operation and source register

for the operation. The destination is encoded with the "FF" bits.

S [S +
| bbb b b | | KKK

I
| [A | ---

I
| ttt t t | | [

I
I I | | | I
| 654 2 0 | | [

I
oo Fom o B Fommm - Fommmm Fommm - Fommmm Foemm - Fommmm - Fommm - +
| KKK JJJ h F| SRC|| 000 | 001 | 010 | 0112 | 100 | 101 | 110 | 111 |
+ + + + + + + + + +
| KKK 000 0 1 | BL || ADD | OR | -- | -- | SUB | AND | CW | EOR |
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK 001 01| F || DECW| -- | -- | NOT | -- | -- | -- | --
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK 010 01 | A1 || ADD | OR | -- | -- | SUB | AND | CW | EOR |
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK011 01| F || INGW]| -- | -- | -- | * | ROL | ASR | ROR |
+ + + + + + + + + +
| KKK 100 0 1 | X0 || ADD | OR | -- | -- | SUB | AND | CW | EOR |
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK 101 0 1| YO || ADD | OR | -- | -- | SUB | AND | CW | EOR |
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK110 0 1 | -- || == | == | -- | == | -- | -- |- -
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +
| KKK 111 01| Y1 || ADD | OR | -- | -- | SUB | AND | CW | EOR |
o R - o Fommm - Fommmm Fommm - Fommmm Fommm - Fommmm - Fommm - +

* For 16-bit destinations, "asl" is identical to "Isl". Thus, if a user

has "asl x0" in his program it should instead assenble into "Isl x0".
Al ways di sassenbles as "Isl x0".

Chart 3 - Supplenental Data ALU, Destination is "F"

This chart is used to encode A FEWnon-multiply Data ALU instructions
where the result of the operation is stored in one of the accunul ators,
Aor B, i.e. is of the form"NONWY_DALUOP <src>, F".

This chart encodes both the arithnetic operati on and source register
for the operation. The destination is encoded with the "F" bit.

o 4ommn- R L T I +
| bbb b b | [KKK
I
| N [---
I
| ttt t t | [[
I
I I | I I
| 654 2 0 | [I
I
S [f o SR Hom o - R Hom o - R Hom - R Fom o - +
| KKK JJJ h F| SRC|| 000 | 0O1 | 010 | 011 | 100 | 101 | 110 | 111 |
+ + ++ + + + + + + + +
| KKO 000 1 0| ~F || -- | <<NA>>| <<Tc>>| <<NA>>| - - | <<NA>>| -- | <<NA>>|
B R [f o Hom - Homm o - Hom - Homm o - Hom - Homm o - Hom o - +
| KKI 000 1 0 | Y |]|<<NA>>| ADC |<<NA>>|<<Tc>>|<<NA>>| SBC |<<NA>>| -- |
B R [f o Hom - Homm o - Hom - Homm o - Hom - Homm o - Hom o - +
| KKKooL 10| F || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +
| KKK010 10| F || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +
| KKK011 10| F || -- | -- | <<Tc>>| <<Te>>| -- | LSL | NORM| LSR |
+ + + + + + + + + +
| KKK 100 1 0| X0 || DIV | -- | <<Tc>>| <<Te>>| -- | -- | -- | --

| KKK 101 1 0| YO || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | --] --
oo e R o m - B S B S B Fomme o - +
| KKK 110 1 0 | -- || -- | -- | <<Te>>|<<Te>>| -- | -- | == | --
oo e R o m - B S B S B Fomme o - +
| KKK 111 1 0| YL || DIV | -- | <<Tc>>|<<Tc>>| -- | -- | --] --
oo e R o m - B S B S B Fomme o - +

Note that there are nine rows above. This is because the entry for
"JJJ" = 000 is broken into two different rows - one where the LSB
of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
(source is "Y")

Tcc instructions that occupy space on this chart are Tcc instructions
where the "Z" bit is a "0". This corresponds to Tcc instructions
of the form"tcc <reg> F*, i.e., without an AGU register transfer.

Chart 4 - Supplenental Data ALU, Destination is "DD'

This chart is used to encode A FEWnon-multiply Data ALU instructions
where the result of the operation is stored in one of the data regs,
X0, YO or Y1, i.e. is of the form "NONMPY_DALUCP <src>, DD".

This chart encodes both the arithnetic operati on and source register
for the operation. The destination is encoded with the "FF" bits.

oo Foemm - o o m e e e e e e e e e e e e e e e e e e e meeeeoaooo- +
| bbb b b | |] KKK

| [A | |] ---

| ttt t t | : |] |

I I | N I

| 654 2 0 | |]

S +- -l- e Hom o - R Hom o - R Hom - R Fom o - +

| KKK JJJ h F| SRC|| 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111 |
+ + ++ + + + + + + + +

| KKO 000 1 1| BL || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKK 001 11| DD || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKK 010 1 1| AL || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKK 011 11| DD || -- | -- | <<Tc>>| <<Te>>| - - | LsL | -- | LSR

+ + ++ + + + + + + + +

| KKK 100 1 1| XO || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKKk 101 11| YO || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKK 120 1 1| -- || -- | -- | <<Te>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

| KKK 111 1 1| Y1 || -- | -- | <<Tc>>| <<Te>>| - - | -- | -- | --
B R [f o Hom - Homm o - Hom - Homm o - Hom - R Hom o - +

Tcc instructions that occupy space on this chart are Tcc instructions
where the "Z" bit is a "1". This corresponds to Tcc instructions
of the form"tcc <reg> F r0,rl1", i.e., with an AGU regi ster transfer.

Yyyyy:
The "yyyyy" field is used to determ ne the operand encodi ng and destination

operand definitions for data ALU instructions where one source operand

is not a Data ALU register. It is described as "010" type instructions
because all instructions in this class begin with "010" In bits 15-13
For instructions of this type, the destination is always specified with
the "fff" field.

yYyyy Qper ati on

00f f f ADD <src>, fff

10fff SUB <src>, fff

11fff CWP <src>, fff

01100 DEC <dst > NOTE: src and dst is a nmenory |location, not a reg
01101 I NC <dst > NOTE: src and dst is a menory |ocation, not a reg
0111x <Avai | abl e>

DALU3OP2 - shifting and Multiplication Encoding |Information

DALU3OP2
e ()
Specifies Integer Multiplication, Signed*Uns, and Shifting Instructions

I Qperation

1000 MPYsu

1100 MACsu

0010 | MPY16

1001 LSRR (rmultibit |ogical right
shift)

1101 LSRAC (used for shifting 32-bit val ues)

0001 ASRR (multibit arithm right
shift)

0101 ASRAC (rmultibit arithm right shift w acc)

0011 ASLL or LSLL (rmultibit arithm left
shift)

ARAA

||]+--- Indicates no shifting or shifting

|| +---- Shift shift dirn and whether LSP goes to DXBl

| +----- Sel ects nmpy vs mac operation

R Sel ects signed*signed vs signed*unsi gned

Note: no inversion of nmultiplier result or rounding is allowed.

NOTE: Al of the above allow FFF as a destinati on EXCEPT
LSRAC and ASRAC which only allow F as a destination
and LSLL which only allows X0, YO, and Y1 as destinations.

Al though the LSLL only allows 16-bit destinations, there is
the ASLL instruction which perforns exactly the same operation
and all ows an accunul ator as well as a destination.

Single Parallel Mve Encodi ngs:

P1DALU
X:
kk:
NN
P1DALU operation and source regi ster encodings (xkkjjj)
x kk jjj
0 KK JJJ - KK specifies the arithmoperation for non-rmultiply instrs
- JJJ specifies one source operand for non-nultiply
instrs
(kk becomes KK when x=0)
(jjj beconmes JJJ when x=0)
1 LL QQ - LL specifies the arithm operation for multiply instrs
- QXQ specifies one source operand for
multiply instrs
(kk becomes LL when x=1)
(jjj becomes QQQ when x=1)
JJJ:

Specifies the source registers for the "non-nultiply" P1DALU cl ass
of instructions as well as the Tcc instruction.

JJJ Sour ce register

000 ~F

001 F (not used by the Tcc instruction)
01x F (not used by the Tcc instruction)
01x F (not used by the Tcc instruction)
100 X0

101 YO

110 (reserved for X1)

111 Y1

KK: ()
Chart 5 - Single Parallel Mve Data ALU, Destination is "F"

This chart is used to encode all of the non-nultiply arithnetic
operations with a SINGLE PARALLEL MOVE, where the result of the

operation is stored in one of the accunulators, Aor B. In this
case, the instruction is of the following form
" NONWPY_DALUCP <src>, F <single_pll_mov>"

This chart encodes both the arithnetic operation and source register
for the operation. The destination is encoded with the "F" bit.

Fomm e o - - [B +
I bbb | || I
| i |] KK [
I ttt | [| -- I
I e [| I
I 654 | [I
Fomm e e e - - [f o Hom o - R Hom - +
| KK JJJ | SRC || 00 | 01 | 10 | 11 |
+ + + + + +
| KK00O | ~F || ADD | TFR | SUB | Cw |
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK001 | F || DECW| NEG | RND | TST |
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK0o10 | F || -- | ABS | -- | -- |
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK011 | F || INCW| CLR | ASL | ASR |
+ + + + + +
| KK 100 | X0 || ADD | TFR | SUB | Cw |
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK 101 | YO || ADD | TFR | SUB | Cw |
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK110 | == || == | - |- | -]
Fomm e e e - - [f o Hom - Homm o - Hom - +
| KK 111] Y1 || ADD | TFR | SUB | Cw |
Fomm e e e - - [f o Hom - Homm o - Hom - +

Note that this chart is sinply extraced fromthe above chart where
bit_2 == 0 and bit_0 == 0. In this case, only the even val ues
within the "KKK" field are retained.

Dual Parallel Read Encodings:

P2DALU
x: ()
uus ()
i O | | . .
P2DALU operation and source regi ster encodi ngs (xuujj)
X uu jj
0 W GG - WU specifies the arithmoperation for non-multiply instrs

- GG specifies one source operand for non-multiply instrs
(uu becomes UU when x=0)
(jj becomes GG when x=0)
1 LL Q - LL specifies the arithm operation for multiply instrs

- QQ specifies one source operand for multiply instrs
(uu becomes LL when x=1)
(jj becomes QQ when x=1)

GG ()
ud: ()
Specifies "non-mul tiply" P2DALU i nstructions and operands.
x UU GG Non-Mul ti ply Operation DALU Source Register
0 00 JJ ADD JJ
0 10 JJ SuB JJ
0 01 -- MOVE <none>
0 11 -- (reserved) <none>
JJ: ()
Specifies the source registers for the "non-multiply" P2DALU instructions.
JJ source register
00 X0
01 YO
10 (reserved for X1)
11 Y1
LL: ()
LL Mul tiplication Operation
00 MPY + (nei ther operand inverted)
01 MAC + (nei ther operand inverted)
10 MPYR + (nei ther operand inverted)
11 MACR + (nei ther operand inverted)
oo . . | |
I nput registers for the "multiply" P2DALU instructions.
Q Miltiplier inputs
00 YO, X0
01 Y1, X0
10 (reserved for X1, YO0)
11 Y1, Y0
vvv: (9,6,0)

Specifies the destination registers for the dual X nmenory
paral l el read instruction WTH arithnetic operation.

VVV 1st read 2nd access

000 X: (RO), YO X: (R3) +, X0 -

010 X: (RO), YO X: (R3) -, X0 -

100 X: (RO), Y1 X: (R3) +, X0 -

110 X: (RO), Y1 X: (R3) -, X0 -

001 X: (R1), YO X: (R3) +, X0 -

011 X: (R1), YO X: (R3) -, X0 -

101 X:(R1), Y1 X: (R3) +, X0 -

111 X (R1), Y1 X: (R3) -, X0 -

AAA

[] _ :

|| +--- (effectively an "r" bit for 1st read - RO vs Rl)
| +---- (effectively an "ni bit for 2nd read - (R3)+ vs (R3)-)
+----- (effectively a "V' bit for 1st read - YO vs Y1)

NOTE: Above table does not show any addressing node infornation
for the 1st read. See the "ni field for this information.
The above tabl e does contain addressing node info for the
second access as seen above.

Move Register Field Definitions:

HHH: destination registers for the "P1DALU X: <ea_n®, HHH'

instruction.

HHH register
000 X0
001 YO
010 (reserved for X1)
011 Y1
100 A
101 B
110 Al
111 Bl
RRR: ()
RRR register
000 RO
001 R1
010 R2
011 R3
111 SP
HHHH: destination registers for the "#xx, HHHH' instruction.
HHHH register
OHHH X0, YO, (reserved for X1), Y1, A B, Al, Bl
10RR RO, R1, R2, R3
11NN ND (dst only), N, NOREG (src and dst), (reserved)
DDDDD: - specifies destination registers for "ddddd, DDDDD'
- specifies source/destination registers for other DDDDD nobves
- NOTE that ordering is different than "ddddd"
DDDD D register
OHHH O X0, YO, (reserved for X1), Y1, A B, Al, Bl
10RR O RO, Rl, R2, R3
11xx O ND (dst only), N, NOREG (reserved)
00xx 1 A0, BO, A2, B2
Olxx 1 M1, (res), (res), SP
Ixxx 1 OVR, PINC/ PAMAS, (res), HW5, (res, used as LC), SR LC LA
ddddd: - specifies source registers for the nove ddddd, DDDDD i nstructi on.
- specifies source registers for the DO REP ddddd i nstruction.
- specifies source/destination registers for bitfield instructions
- NOTE that ordering is different than "DDDDD"
ddddd register
O0HHH X0, YO, (reserved for X1), Y1, A B, Al, Bl
100RR RO, Rl, R2, R3
101xx (res-ND), N, (res-NOREG), (res)
010xx A0, BO, A2, B2
011xx M1, (res), (res), SP
11xxx OVR, PINC/ PAMAS, (res), HW5, (res, used as LC), SR LC LA
Speci al registers which need to be detected:
1110 O NOREG - Prevents external bus cycle, or perhaps any
menory cycle fromoccurring. Required
because
the chip may not own the bus. Forces access
internal, or perhaps even disables
prxrd/ prxw.
Cccurs on read fromreg only. Note there is
no register actually present. It applies to
reads fromthe register because this is true
during an LEA where no nenory cycle is
desi red,
but this is not true for a TSTWinstruction,
whi ch nmust actually performa nmenory cycle
and nove the data onto the cgdb.
1100 O ND - Accesses "N' register but also asserts pmmop.

Cccurs on wite to reg only.

1100 O ND - Prevents interrupts, force adr onto eab,
regardl ess of whether it's on-chip or not.
Note there is no actual register. Asserts
a new ctrl signal, pndram CGccurs on reads
fromreg only. Used to be the DRAM register.
Must di sable xnemwites, simlar to reads
from NOREG. Force the access internal.

1011 1 HWS - Any reads of this register nust "pop" the
HWs and HWSP. Any wites to this register
must "push" the HWS and HWEP.

RR: RR register
00 RO
01 R1
10 R2
11 R3

AGQU (Address Generation Unit) Instruction Field Definitions:

MM specifies addressing nodes for the "X <ea_Mw, DDDDD' instruction.

W addr essi ng node

00 (Rn) + or (SP) +

01 (Rn) +N or (SP) +N

10 (Rn) - or (SP) -

11 (Rn) or (SP) (LEA cannot use this conbination)

m specifies addressing nmodes of "P1DALU' and " P2DALU’

m addr essi ng node
0 (Rn) +
1 (Rn) +N
W
W nove direction for menory noves
0 regi ster -> nenory
1 menory -> register
W, DALU resul t

witten back to nmenory (not allowed for CMP or SUB instrs)
remains in register

RO s

| mredi at es and Absol ute Address Instruction Field Definitions:

AAA:
Upper 3 address bits for JMP, Jcc, and JSR instructions.
BBBBBBB:
7-bit signed integer. For #xx, HHHH and DALU #xx, F i nstructions.
BBBBBB:
6-bit unsigned integer. For DO REP #xx instruction.
AAAAAA:
6-bit positive offset for X (R2+xx) addressing node.
All ows positive offsets: 0 to 63
aaaaaa:
6-bit negative offset for X (SP-xx) addressing node.
Al'l ows negative offsets: -1 to -64
Aaaaaaa:

7-bit offset for MOVE, DALU & Bitfield using X (SP-#xx), X (R2+#xx)
and Bcc <aa> instructions:
A=0 => X: (R2+#xx) allows positive offsets: 0 to 63
A=1 => X (SP-#xx) all ows negative offsets: -1 to -64

For Bcc, "A" specifies the sign-extension.
RESTRI CTI ON: Aaaaaaa must never be all zeros for the Bcc instruction.

Ppppppp: . e .
7-bit absolute address for MOVE, DALU, & Bitfield on X <pp> instr

It is sign-extended to allow access to both the peripherals and
the 1st 64 locations in X-menory.

QG her Instruction Field Definitions:

Z: specifies the parallel noves of the address pointers in a Tcc instruction.

4 nove
0 RO- >R0 (i.e no transfer occurs in the AGU unit)
1 RO- >R1 (AGU transfers RO register to RL if condition true)
For the case where Z=0, the assenbler will not |look for a field
such as "teq x0,a r0,r0". Instead, the AGJ register transfer
will be suppressed, such as in ""teq x0,a".
E E instruction
0 DO
1 REP
tt: tt instruction
00 STOP
01 VWAI T
10 SW
11 | LLEGAL
Bl TFI ELD:
UUU. specifies bitfield/ branch-on-bit instructions
uuuJ oper ati ons
000 BFCLR
001 BFSET
010 BFCHG
011 MOWE (used by "nove #iiii, <ea>")
100 BFTSTL
110 BFTSTH
101 BRCLR (rmodifies carry bit)
111 BRSET (rnodifies carry bit)
0xx last word = iiiiiiiiiiiiiiii
1x0 last word = iiiiiiiiiiiiiiii
1x1 last word = iiiiiiiiUAaaaaaa
(note: this is the 3rd word, not 2nd, for BF/ BR #XxxxX, X: XXXX)
pidiiiiiiiiiiiiii = 16-bit immed mask
piiiiiii = 8-bit inmmed mask for upper or |ower byte
u=1 sel ects upper byte
u=2~0 sel ects | ower byte
Aaaaaaa = 7-bit relative branch field
Not e: UAaaaaaa is not available to the BFTSTH, BFTSTL instrs
The ANDC, ORC, EORC, and NOTC are instructions which fall directly
onto the bitfield instructions. They are nmapped as foll ows:
ANDC is identical to a BFCLR with the mask inverted
ORC is identical to a BFSET (mask not inverted)
EORC is identical to a BFCHG (nmask not inverted)
NOTC is identical to a BFCHG with the mask set to $FFFF
CC-C

Specifies conditions for the Tcc instructions:
(in this case, "CC' falls onto Cl10 of CCCC, "C' falls onto C2, C3 is "0")

Ccce: ()

CC-C condi tion

00 O cc
010 cs
10 0 ne
11 0 eq
00 1 ge
01 1 It
10 1 gt
11 1 le

Specifies conditions for the Jcc, JScc, and Bcc instructions

Unusual | nst

Cccc condition - for encode7

0000 cc (sane as "hs", unsigned higher or same)

0001 cs (sane as "lo0", unsigned | owner)

0010 ne

0011 eq

0100 ge

0101 I't

0110 gt

0111 le

10** ALWAYS TRUE condition (PLAs decode this)
1001 ALVWAYS - JMP, BRA, JSR (val ue used by assenbl er)
1011 (reserved -coul d be used for del ayed)

1010 (reserved)

1000 (reserved)

1100 hi (unsi gned higher)

1101 I's (unsigned | ower or sane)

1110 nn

1111 nr

ructi on Encodi ngs:

Encodi ng of

$E042.

$E042.

"ADD fff, X <aa>" and "ADD fff, X (sp-xx)":
There is an unusual trick used to encode these two instructions.
What is so unusual is that the first word of the two word
"ADD/ SUB/ CWMP fff, X: <aa>" instruction is identical to the one
word encodi ng of the "ADD/ SUB/ CMP X: <aa>, fff" instruction
It is also true the first word of the two word
"ADDY SUB/ CWP fff, X (sp-xx)" instruction is identical to the one
word encodi ng of the "ADD/ SUB/ CWP X: (sp-xx),fff" instruction

What nmakes these instructions differ is the encoding of the instruction
imediately following the first word. The rules are listed bel ow

Encodi ng Rul es:

ADD X: <aa>, fff:
- 1st word - Sinply uses the one word encoding for ADD X: <aa>, fff
- 2nd word - Any valid DSP56800 instruction, which by definition
will not be the follow ng reserved hex val ue

Note that this value is reserved in the DSP56800

bit encodi ng map.

ADD X: (SP-xx),fff:
- 1st word - Sinply uses the one word encodi ng for
ADD X: (SP-xx),fff
- 2nd word - Any valid DSP56800 instruction, which by definition
will not be the follow ng reserved hex val ue

Note that this value is reserved in the DSP56800

bit encodi ng nap.

ADD X: xxxx, fff:
- 1st word - 1st word of encoding uses ADD X: xxxx, fff

Encodi ng of

Encodi ng of

with the "w' bit set to "1"
- 2nd word - second word of encoding contains the 16-bit
absol ute address

ADD fff, X <aa>:
- 1st word - 1st word of this instruction uses the one word
encoding for the ADD X: <aa>, fff instruction.
- 2nd word - 2nd word of this instruction is sinply set to $E042.

ADD fff, X (SP-xx):
- 1st word - 1st word of this instruction uses the one word
encoding for the ADD X (SP-xx),fff instruction.
- 2nd word - 2nd word of this instruction is sinply set to $E042.

ADD fff, X XxXxx:
- 1st word - 1st word of encoding uses ADD X: xxxx, fff
with the "w' bit set to "0O"
- 2nd word - second word of the instruction contains the 16-bit
absol ut e address

Thus, the presence of the hex value $E042 in the instruction

imedi ately after a "ADD X <aa>, fff" or "ADD X (sp-xx),fff"
indicates that the instruction is really an "ADD fff, X <aa>" or
"ADD fff, X (sp-xx)" instruction. These later two instructions
encode as two word instructions using the techni que descri bed above.

Note that this encoding (where the destination is a nmenory
l ocation) is NOT allowed for the SUB or CMP instructions.
It is only allowed for the ADD instruction.

LEA:

There is a trick used for encoding the LEA instruction. The trick

is used in several different places within the opcode map and is
simply this - anytine a MOVE instruction uses "NOREG' (located in the
HHHH or DDDDD field) as a source register, the instruction is no |onger
interpreted as a MOVE instruction. |Instead it operates as an LEA
instruction. Thus, the syntax for the instruction available to the
user is "LEA", but the actual bit encoding uses the MOVE instruction
where the source register is "NOREG':

DSP56800 | nstruction Encoded As:
LEA (Rn)+ => MOVE NOREG, X: (Rn) +
LEA (Rn)- => MOVE NOREG, X: (Rn) -
LEA (Rn)+N => MOVE NOREG, X: (Rn) +N
LEA (R2+xx) => MOVE NOREG, X: (R2+xx)
LEA (Rn+xxxx) => MOVE NOREG, X: (Rn+xxxXx)
LEA (SP)+ => MOVE NOREG, X: (SP) +
LEA (SP)- => MOVE NOREG, X: (SP) -
LEA (SP)+N => MOVE NOREG, X: (SP) +N
LEA (SP-xx) => MOVE NOREG, X: (SP- xx)
LEA (SP+xxXxx) => MOVE NOREG, X: (SP+xxxX)
CAREFUL: LEA nust NOT wite to a menory | ocation!
NOTE: LEA not allowed for (Rn) or (SP).
TSTW

There is a trick used for encoding the TSTWinstruction. The trick
is used in several different places within the opcode map and is
sinply this - anytinme a MOVE Instruction uses "NOREG' (located in the
HHHH or DDDDD field) as a dest register, the instruction is no |onger
interpreted as a MOVE instruction. Instead it operates as a TSTW
instruction. Thus, the syntax for the instruction available to the
user is "TSTW, but the actual bit encoding uses the MOVE instruction
where the destination register is "NOREG:

DSP56800 | nstruction Encoded As:
TSTW X: <aa> => MOVE X <aa>, NOREG
TSTW X: <pp> = MOVE X: <pp>, NOREG

TSTW X XXXX => MOVE X xxxX, NOREG

TSTW X: (Rn) => MOVE X: (Rn), NOREG
TSTW X: (Rn) + => MOVE X: (Rn) +, NOREG
TSTW X: (Rn) - => MOVE X: (Rn) -, NOREG
TSTW X: (Rn) +N => MOVE X: (Rn)+N NOREG
TSTW X: (Rn+N) => MOVE X: (Rn+N), NOREG
TSTW X: (Rn+xxxXx) => MOVE X: (Rn+xxxx) NOREG
TSTW X: (R2+xX) => MOVE X (R2+xx), NOREG
TSTW X: (SP) => MOVE X: (SP), NOREG
TSTW X: (SP) + => MOVE X: (SP) +, NOREG
TSTW X: (SP) - => MOVE X: (SP) -, NOREG
TSTW X: (SP) +N => MOVE X (SP)+N NOREG
TSTW X: (SP+N) => MOVE X: (SP+N), NOREG
TSTW X: (SP+XXXX) => MOVE X (SP+xxxx) NOREG
TSTW X: (SP- xx) => MOVE X: (SP-xx), NOREG
TSTW <r egi st er > => MOVE ddddd, NOREG

NOTE: TSTW (Rn)- is not encoded in this manner, but instead
has its own encoding allocated to it.

NOTE: TSTWHWS is NOT allowed. All other on-chip registers
are al |l oned.

| MPORTANT NOTE: TSTW can be done on any other instruction which
allows a nove to NOREG Note this doesn't nake sense for LEA.

NOTE: TSTWF (operates on saturated 16 bits) differs
fromTST F (operates on full 36/32 bit accunul ator)

NOTE: TSTWP: () is NOT all oved.

Encodi ng of POP:
The encoding of the POP follows the sinmple rul es bel ow.

DSP56800 | nstruction Encoded As:
POP <reg> => MOVE X: (SP) -, <reg>
POP = LEA (SP)-

In the first case, a register is explicitely mentioned, whereas in
the second case, no register is specified, i.e., just removing a val ue
fromthe stack.

NOTE: There is no PUSH instruction, but it is easy to wite
a sinple two word macro for PUSH.

Encodi ng of CLR
The encoding for a CLR on anything other than A or B
shoul d encode into the follow ng: "nmove #0, <reg>".
Allows the following instructions to be recognized by the assenbl er:

CLR DD (DD = x0,y0,yl)
CLR F1 (F1 = al, bl)

CLR RR (DD =7r0,1r1,r2,r3)
CLR N

Note that no parallel nove is allowed with these.
Note al so that CLR F sets the condition codes,
whereas CLR on DD, F1, RR, or N does NOT set the condition codes.

Encodi ng of ENDDO
The ENDDO instruction will be encoded as "MW HW5, NOREG'.

Encodi ng of the Tcc Instruction:

The Tcc instruction is sonewhat difficult to understand because it's encoding
overl ays the encodi ngs of some Data ALU instructions when Bit 2 of the opcode
isa"1". It is overlayed obviously so that for a particular bit pattern,
there is only one unique instruction present. Reference to this can be seen
with the "<<Tc>>" entry found within Charts 3 and 4 below. Use the definition

"0110 11CC FJJJ 01CZ Tcc JJJ,F [RO->R1]"

to encode this instruction.

Restricti ons:

- The HWS register cannot be specified as the | oop count for a DO or
REP instruction. Likewi se, no bitfield operations (BFTSTH, BFTSTL,
BFSET, BFCLR, BFCHG BRSET, BRCLR) can operate on the HWS register.
Not e, however, that all other instructions which access ddddd, including
"nmove #xxxx, HAB" and TSTW can operate on the HWS register.

- The following registers cannot be specified as the |oop count for a DO or
REP instruction - HW5 M1, SR OWR

- The "lea" instruction does NOT allow the (Rn) addressing node, i.e.,
it only allows (Rn)+, (Rn)-, (Rn)+N, (Rn+xxxx), (R2+xx), and (SP-xx)
- Cannot do a bitfield set/clr/change on "ND' register, i.e., the bitfield

instruction cannot be imediately followed by an instruction which uses
the "N' register in an addressing node.
bfclr #$1234, n
nove x: (ro0+n), x0 ; illegal - needs one NOP
Special care is necessary in hardware | oops, where the instruction at
LAis followed by the instruction at the top of the loop as well as the
instruction at LA+1.
- Cannot nove a long i mediate value to the "ND' register. This is because
the long i Mmedi ate nove is inplemented simlar to the bitfield instrs.

nove #$1234,n ; long i medi ate

nove x: (r0+n), x0 : | LLEGAL - needs one NOP

nove #3$4, n ; short imedi ate, uses ND
register

nove x: (r0+n), x0 ;. ALLOWED since uses short imediate

- The val ue "0000000" is not allowed for Bcc.

In addition, this sane value is not allowed as the rel ative offset
for a BRSET or BRCLR instruction.

- The value "0" is not allowed for the DO #xx instruction.

If this case is encountered by the assenbler, it should not be accepted.

- Junps to LA and LA-1 of a hardware |oop are not allowed. This also
applies to the BRSET and BRCLR instructions.

- A NORMinstruction cannot be inmediately followed by an instruction
whi ch uses the Address ALU register nodified by the NORMinstruction
i n an addressi ng node.

norm ro, a

nmove x: (rQ)+, x0 ; illegal - needs one NOP
Special care is necessary in hardware | oops, where the instruction at
LAis followed by the instruction at the top of the |loop as well as the
instruction at LA+1.

- Only positive values |ess than 8192 can be noved to the LC register.

- Cannot REP on any multiword instruction or any instruction which
perforns a P:() menory nove.

- Cannot REP on any instruction not allowed on the DSP56100.

- IF a MOVE or bitfield instruction changes the value in RO-R3 or SP,
then the contents of the register are not available for use until the
second following instruction, i.e., the inmediately follow ng instruction
shoul d not use the nodified register to access X nmenory or update an
address. This restriction does NOT apply to the N register or the
(Rn+xxxx) addressing node as di scussed bel ow.

- For the case of nested looping, it is required that there are at |east
two instruction cycles after the pop of the LC and LA registers before
the instruction at LA for the outer | oop.

- A hardware DO | oop can never cross a 64K program nenory boundary, i.e.,
the DO instruction as well as the instruction at LA must both reside
in the same 64K program nenory page.

- Jcc, JWMP, Bcc, BRA, JSR BRSET or BRCLR instructions are not allowed in
the last two |locations of a hardware do loop, i.e., at LA and LA-1.

This also nmeans that a two word Jcc, JMP, or JSR instruction may not have
its first word at LA-2, since its second word would then be at LA-1, which
is not allowed.

Restricti ons Renpbved:
- The follow ng instruction sequence i s NOWN ALLOAED:
nove <> lc ; move anything to LC reg
do | c, | abel ; imediately followed by DO

This was not allowed on the 56100 fanmly due to its internal pipeline.
- An AALU pipeline NOP is not required in the foll owi ng case:

nove <> Rn ; same Rn as in follow ng
instr

nove X: (Rn+xxxx) , <> ; OK, no NOP required!

nove <> Rn ; same Rn as in follow ng
instr

nove <>, X: (Rn+xxxx) ; OK, no NOP required!

In this case, there will NOT be an extra instruction cycle inserted
because any nove with the X (Rn+xxxx) or X: (SP+xxxx) addressing node
is already a 3 lcyc instruction.
- An AALU pipeline NOP is not required in the foll owi ng case:
nove <> Rn ; same Rn as in
follow ng instr
| ea (Rn+xxxX) ; OK, no NOP required!

In this case, there will NOT be an extra instruction cycle inserted
because any lea with the (Rn+xxxx) or (SP+xxxx) addressing node
is already a 2 lcyc instruction.

- An AALU pipeline NOP is not required in the foll owi ng case:

nove <> N
nove X: (Rn+N) , <> 7 OK, no NOP required!
nove <> N
nove <>, X: (Rn+N) ; OK, no NOP required!
nove <> N
nove <>, X: (Rn) +N 7 OK, no NOP required!
nmove <> N
nove X: (Rn) +N, <> ; OK, no NOP required!

In this case, there WLL be an extra instruction cycle inserted
and the assenbler will use the ND register, not the N register.

	Application Note: Machine Code Programming
	Assembler Programming
	CODE functions
	CODE-SUB functions
	CODE-INT functions
	Register Usage
	Calling High-Level Words from Machine Code
	Appendix: DSP56F805 Instruction Encoding

