
ServoPod-USB™

User’s Manual

Warranty

New Micros, Inc. warrants its products against defects in materials and workmanship for a period of 90 days. If you
discover a defect, New Micros, Inc. will, at its option, repair, replace, or refund the purchase price. Simply call our
sales department for an RMA number, write it on the label and return the product with a description of the problem. We
will return your product, or its replacement, using the same shipping method used to ship the product to New Micros,
Inc. (for instance, if you ship your product via overnight express, we will do the same). This warranty does not apply if
the product has been modified or damaged by accident, abuse, or misuse.

Copyrights and Trademarks

Copyright © 2002 by New Micros, Inc. All rights reserved. ServoPod-USB™, IsoMax™ and Virtually Parallel
Machine Architecture™ are trademarks of New Micros, Inc. Windows is a registered trademark of Microsoft
Corporation. 1-wire is a registered trademark of Dallas Semiconductor. Other brand and product names are trademarks
or registered trademarks of their respective holders.

Disclaimer of Liability

New Micros, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment
or property, and any costs of recovering, reprogramming, or reproducing any data stored in or used with New Micros,
Inc. products.

Internet Access

Web site: http://www.newmicros.com

This manual: http://www.newmicros.com/store/product_manual/ServoPod-USB.zip

Email technical questions: techsupport@newmicros.com

Email sales questions: nmisales@newmicros.com

Internet ServoPod-USB™ Discussion List

We maintain the ServoPod-USB™ discussion list on our web site. Members can have all questions and answers
forwarded to them. It’s a way to discuss ServoPod-USB™ issues.

To subscribe to the ServoPod-USB™ list, visit the Discussion section of the New Micros, Inc. website.
http://www.newmicros.com/discussion/

This manual is valid with the following software and firmware versions:
IsoMax™ V 0.6 or newer.

If you have any questions about what you need to upgrade your product, please contact New Micros, Inc.

GETTING STARTED

Thank you for buying the ServoPod-USB™. We hope you will find the ServoPod-USB™
to be the incredibly useful small controller board we intended it to be, and easy to use as
possible.

If you are new to the ServoPod-USB™, we know you will be in a hurry to see it working.
Once we’ve got communications, then we can make some lights blink and know for sure
we’re in business. Let’s make this “Pod” talk to us!

First, you need to download and install the following driver and program on your PC,

- Download the Virtual COM Port (VCP) USB driver from the link below,
http://www.ftdichip.com/FTDriver.htm

- Terminal Program, NMITerm
http://www.newmicros.com/download/software/NMI/NMITerm.zip

Connect the provided USB (A to B type) cable from the PC to the ServoPod-USB™.
All three LED’s should come on within a short delay after the USB cable is plugged in.
If the LED’s don’t come on after more than a few seconds, unplug the USB cable
quickly. Please see the trouble shooting section of this manual or contact NMI technical
support for help, before going any further.

As soon as the USB cable is plugged in, the PC will pop up the message: “ Found New
Hardware”. It will ask to install the driver, usually when you install the driver for the first
time. You can either let it automatically searches for the USB driver (make sure to unzip
the file after downloading), or you can manually browse the window for the USB driver
where it was downloaded and unzipped earlier. Once the FTDI USB driver is installed,
you can open the communication program, NMITerm. The NMITerm program will open
with the default configuration for 9600 baud, 8N1, and the COM port will be
automatically detected. Keep in mind, you must first connect the USB cable prior to
opening the terminal program in order for the NMITerm to recognize the USB COM port
with auto detection. If NMITerm detects other available serial COM port instead of USB
COM port, click on the NMITerm Options menu, Options>Settings>Serial COM Port,
change the COM Port along with the new baud rate 115,200. Then click on APPLY, and
OK buttons to save the new settings. If you are not sure which COM Port that is used by
USBÙSerial, you can look up under:
Start>Settings>Control Panel>System>Hardware>Device Manager>Ports(COM &
LPT)

If everything is setup correctly, pressing the reset button on the ServoPod-USB™ the
terminal program should show “IsoMax™ Vx.x”, and each time you hit an Enter key the
NMITerm will respond with “OK”. Seeing this message means the communication is
established.

Congratulations! Now let’s do something interactive with the ServoPod-USB™.

Let’s try to blink the LEDs. First, make sure the Caps Lock key is ON. At the Terminal
prompt enter the following and watch the LEDs respond ,

REDLED OFF <return>
REDLED ON <return>
YELLED OFF <return>
YELLED ON <return>
GRNLED OFF <return>
GRNLED ON <return>

Now you should have a good feeling because you can tell your ServoPod-USB™ is
working. It’s time for an overview of what your Servopod-USB™ has for features.

FEATURES
• DSP56F807 MPU, 16-bit processor
• Up to 40 MIPS at 80 MHZ core frequency
• Memory & Configuration Modes

o Mode A (internal only)
� 60K x 16 Program Flash
� 2K x 16 Boot Flash
� 8K x 16 Data Flash
� 2K x 16 Program ram
� 4K x 16 Data Ram

o Mode B (internal & external combine)
� 32K x 16 Program Flash (internal)
� 2K x 16 Boot Flash (internal)
� 8K x 16 Data Flash (internal)
� 2K x 16 Program ram (internal)
� 32K x 16 Program ram (external)
� 4K x 16 Data Ram (internal)
� 48K x 16 Data Ram (external)

o Mode 3 (external only) - IsoMax does not support this mode.
Assembly, C, Codewarrior, and other Third party compilers are
supported. Jtag-cable-10P is required
� 64K x 16 Program Ram
� 64K x 16 Data Ram

Note: Mode 0 is included Mode A & B. Mode 1 & 2 is supported by other
member of DSP56800 family, ROM-based MPU’s only.

• Two Serial Communication Interface,
o Jumper configurations:

� SCI0 default configures for USBÙSerial, and SCI1 for RS-232
� or, Both SCI0 & SCI1 for Serial RS-232 interfaces

o Optional configurations below are only available per special request.
� SCI0 for USB, and SCI1 for TTL or RS-422/485
� Or, SCI0 for RS-232, and SCI1 for TTL or RS-422/485

• Serial Peripheral Interface (SPI)
• CAN 2.0 A/B module

o SN65HVD230, 3V CAN Transceiver
o Multiple boards can be network (MSCAN)
o Ideal for harsh or noisy environments, like automotive applications

• Programmable bit rate up to 1Mbit
• Up to 22 GPIO lines, atleast 10 are shared with external memory

address/data lines
• Two 8-channel 12-bit ADCs

o Single Conversion is 1.7us (8.5 ADC cycles)
o Continuous Conversion is 1.2us (6 ADC cycles)
o Simultaneous conversion on each ADC
o Single ended or differential inputs
o Signed or unsigned results
o ADC can be sync’d with PWM
o Optional interrupts:

� at end of scan

� out-of-range limit
� zero crossing
� Programmable high limit
� Programmable low limit
� Programmable offset

• Up to six General Purpose Quad Timers
o Each channel has its own timebase, 4 16-bit timers
o Count up/down
o Cascadable
o Four channels, each programmable as input capture or output

compare
o Input capture trigger rising edge, falling edge, or any edge
o Output capture action Set, reset or toggle
o External sync input

• Two Quadrature Decoder
o 32-bit position counter
o 16-bit position counter
o 16-bit revolution counter (initialize by SW or external event)
o 40MHZ count frequency (up to)
o Logic to decoder quadrature signals
o Configurable digital filter for inputs
o Watchdog timer to detect stalled shaft

• 12-channel PWM module
o 15-bit counter with programmable resolutions down to 25ns
o 12 independent outputs or six complementary pairs of outputs
o Center aligned or Edge aligned pulses
o Automatic dead time insertion for complementary outputs

• 6-current sense pins, or Digital Inputs
• 6-fault pins, or Digital Inputs
• JTAG/OnCE port for debugging
• Examine registers, memory, of peripherals

o Set breakpoints, Step, or trace instructions
o Full-duplex synchronous operation on four-wire interface, Master or

Slave
• WatchDog Timer/COP module

o COP is CPU clock divided by 16384
• Low voltage, Stop, Wait, and Sleep Modes
• Three user's leds: Red, Yellow, Green
• Onboard 5V & 3V linear regulators
• External Power On/Off switch
• Push Button Reset switch
• Header Connectors for 26 RC-Servos
• Board Size: 2.3"(W) x 4.0"(L) x 0.6"(H)

INTRODUCTION

What is neat about the ServoPod-USB™? Several things. First it is a very good micro
controller. There is no need for an additional power supply to power the micro-controller
for program development other than an USB cable connects from your PC or laptop to
the ServoPod-USB™. The ServoPod-USB™ can steal the power directly from the PC or
laptop via USB cable. The ServoPod-USB™ was intended to be as small as possible,
while still being useable. A careful balance between dense
features, and access to connections is made here. Feature
density is very high. So secondly, having connectors you can
actually “get at” is also a big plus.

What is the use of a neat little computer with lots of features, if
you can conveniently only use one of those features at a time?

The answer is very important. The neatest thing about the
ServoPod-USB™ is software giving Virtually Parallel Machine
Architecture!

Virtually Parallel Machine Architecture (VPMA) is a new programming paradigm.
VPMA allows small, independent machines to be constructed, then added seamlessly to
the system. All these installed machines run in a virtually parallel fashion.

 In an ordinary high level language, such as C, Basic, Forth or Java, most anyone
can make a small computer do one thing well. Programs are written flowing
from top to bottom. Flow charts are the preferred diagramming tools for these
languages. Any time a program must wait on something, it simply loops in
place. Most conventional languages follow the structured procedural
programming paradigm. Structured programming enforces this style.

Getting two things done at the same time gets tricky. Add a few
more things concurrently competing for processor attention, and
most projects start running into serious trouble. Much beyond
that, and only the best programmers can weave a program
together running many tasks in one application.

Most of us have to resort to a multitasking system. (Windows and Linux are the most
obvious examples of multitasking systems.) For a dedicated processor, a multitasking
operating system adds a great amount of overhead for each task and an unpleasant
amount of program complexity.

The breakthrough in IsoMax™ is the language is inherently
“multitasking” without the overhead or complexity of a multitasking
operating system. There’s really been nothing quite like it before.
Anyone can write a few simple machines in IsoMax™ and string them
together so they work.

Old constrained ways of thinking must be left behind to get this new level of efficiency.
IsoMax™ is therefore not, and cannot be, like a conventional procedural language.
Likewise, conventional languages cannot become IsoMax™ like without loosing a
number of key features which enforces Structured Programming at the expense of
Isostructure.

In IsoMax™, all tasks are handled on the same level, each running like its own separate
little machine. (Tasks don’t come and go, like they do in multitasking, any more than
you’d want your leg to come and go while you’re running.) Each machine in the program
is like hardware component in a mechanical solution. Parts are installed in place, each
associated with their own place and function.

Programming means create a new processor task fashioned as a machine, and debug it
interactively in the foreground. When satisfied with performance, you install the new
machine in a chain of machines. The machine chain becomes a background feature of the
ServoPod-USB™ until you remove it or replace it.

The combination of VPMA software and diverse hardware makes ServoPod-USB™ very
versatile. It can be used as a stand-alone computer board, deeply embedded inside some
project. It can be the controller on a larger PCB board. An ServoPod-USB™ brings an
amazing amount power to a very small space, at a very reasonable cost. You’ll
undoubtedly want to have a few ServoPod-USB™ ‘s on hand for your future projects.

QUICK TOUR
Start by comparing your board to the diagram below. Most of the important features on
the top board are labeled.

The table below gives a brief description of each connector, jumper and the signals
involved.

J1 SCI0, Power, General Purpose I/O Serial, Power, Ports PA0 – PA7, PB0 – PB7
J2 SCI 1, CAN RS232(or RS422/485), and CANH, CANL
J3 SPI/GPIO’s SCLK, MISO, MOSI, SS, PE2, PE3, RSTO
J4 Alternate Power Input Connector Vin & Ground, Controller Power Inputs
J5 A/D 0 to 7 First 8 ADC channels
J6 A/D 8 to 15 Second 8 ADC channels
J7 Fault and Status for PWM FaultA0-3, FaultB0-3, ISA0-2, ISB0-2
J8 JTAG JTAG Interface
J9 PWM pins PWMA0-5, PWMB0-5
J10 Motor Encoder x 2/Timers Phase A, B, Index, Home x 2(or TA0-3,TB0-3)
J11 Timers and Interrupts TC0, TC1, TD0-3, IRQA, IRQB
J12 Two wire handshaking RTS, CTS handshaking signals, RI wakeups
J13 Controller powers selection uP powers by USB bus or external supply
J14 External Memory Disable/Enable External Ram Chip select Disable/Enable
J15 SCI0 USB/RS-232 selection USB transmitter/RS-232 Receiver selection
J16 USB chip Self/Bus powered USB powers by USB bus or external supply
J17 Alternate Servo Power Input Con. +V & GND
J18 Alternate Servo Power Input Con. +V & GND
J19 Alternate Servo Power Input Con. +V & GND
J20 Internal Memory Disable/Enable Boot from Internal or External Memory

CONNECTOR PIN ASSIGNMENTS
J1, POWER, SERIAL, GPIO’s

+VIN 1 2 SOUT
GND 3 4 SIN
RST’ 5 6 ATN’
+5V 7 8 GND
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 22 PB6
PA7 23 24 PB7

Note: In picture above, Pin 1 is at upper left viewing CPU side with J1 at left.
This connector pin out and pin numbering scheme is unique to this one instance. Origin
of pin out and numbering is to match stamp-like connection pin outs.

J3, SPI – GPIO’s
+5V 1 2 GND
+3V 3 4 SCLK

RSTO 5 6 MOSI
PE2 7 8 MISO
PE3 9 10 SS’

J2, CAN – RS-232(or 422/485)
RxD1/+XMT 1 2 +3V
TxD1/-XMT 3 4 GND

GND 5 6 CANL
SIN1/-RCV 7 8 GND
SOUT1/+RCV 9 10 CANH

J5, ADC 0-7
VSSA ANA1 ANA3 ANA5 ANA7

2 4 6 8 10
1 3 5 7 9

VREF ANA0 ANA2 ANA4 ANA6

J6, ADC 8-15
VSSA ANA9 ANA11 ANA13. ANA15

2 4 6 8 10
1 3 5 7 9

VREF2 ANA8 ANA10 ANA12 ANA14

J7, Various Inputs
+3V ISA0 ISA1 ISA2 ISB0 ISB1 ISB2 GND

2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15

FA0 FA1 FA2 FA3 FB0 FB1 FB2 FB3
FAx: FAULT0-3 , FBx: FAULTB0-3

J9, PWM Servo Output

 Sig. +V GND
PWMA0 1 2 3
PWMA1 4 5 6
PWMA2 7 8 9
PWMA3 10 11 12
PWMA4 13 14 15
PWMA5 16 17 18
PWMB0 19 20 21
PWMB1 22 23 24
PWMB2 25 26 27
PWMB3 28 29 30
PWMB4 31 32 33
PWMB5 34 35 36

J10, Motor Encoder/Timers

 Sig. Power Power
+5V 1 2 +V 3 +3V

GND 4 5 GND 6 GND
PH A 0/TA0 7 8 +V 9 GND
PH B 0/TA1 10 11 +V 12 GND
IND 0/TA2 13 14 +V 15 GND
HM 0/TA3 16 17 +V 18 GND

+5V 19 20 +V 21 +3 V
GND 22 23 GND 24 GND

PH A 1/TB0 25 26 +V 27 GND
PH B 1/TB1 28 29 +V 30 GND
IND 1/TB2 31 32 +V 33 GND
HM 1/TB3 34 35 +V 36 GND

J8, JTAG J11, Timers & IRQ

J12, Handshaking Signals

J4, Alt. Controller Power Input
 1 2
VIN GND

J17, Servo Power Input
 1 2
 +V GND

J18, Servo Power Input
 1 2
 +V GND

J19, Servo Power Input
 1 2
 +V GND

+3V 1 2 GND
TDI 3 4 GND
TDO 5 6 TMS
TCK 7 8 DE

RESET 9 10 TRST

 Sig. Power Power
+5V 1 2 +V 3 +3V
GND 4 5 GND 6 GND
TC0 7 8 +V 9 GND
TC1 10 11 +V 12 GND

IRQA 13 14 +V 15 GND
IRQB 16 17 +V 18 GND
+5V 19 20 +V 21 +3V
GND 22 23 GND 24 GND
TD0 25 26 +V 27 GND
TD1 28 29 +V 30 GND
TD2 31 32 +V 33 GND
TD3 34 35 +V 36 GND

2 PD0 4 PD1 6 GND 8 PD2
1 RTS 3 CTS 5 CTS 7 RI

JUMPER CONFIGURATIONS

J12 , Handshaking signal jumper settings:

• Two wire handshake. Connect pin 1 & 2(RTS Ù PD0), and pin 3 & 4(CTS
Ù PD1). Since the DSP processor does not have the actual handshaking
signals, Port PD0 & PD1 are used to implement the CTS & RTS signals.

• Single wire handshake. Connect Pin 1 & 2 (RTS Ù PD0), and pin 5 & 6
(CTSÙ GND).

• PD2 can be used to wake-up the PC through USB Ring Indicator input pin,
RI. Connect pin 7 & 8(RI Ù PD2). To use this feature, the remote wake-up
must be enabled in the serial eeprom, 93C64A. Please see the USB appnotes
from the manufacture for details, http://www.ftdichip.com/FTApp.htm or,
http://www.ftdichip.com/

Since port PD0-PD2 are also sharing with the LEDs control signals.
Removing the jumpers is suggested for applications which are not required for
Handshaking, or waking up the PC.

 J13, Controller power options:

• Option 1(default), Controller powers by USB bus powered. Pin 1 & 2 are
connected. Also J15 pin 2 & 3 are connected.

• Option 2, Controller powers by external supply. Pin 2 & 3 are connected.

Warning, if you are intending to use option 2, external supply with USB cable
connection for program development then you must power the ServoPod-USB™ with
the external supply prior to plugging in the USB cable to prevent the PC power
shutting down due to the use of exceeding the power limitation by USB bus during
power up condition.

J14, Enable/Disable the external memory with the jumper Close/Open respectively.

J15, SCI0, Primary Serial interface configurations:

• Default configuration for USBÙSerial interface, pin 2 & 3 are connected.
• For RS-232 interface, pin 1 & 2 are connected.

J16, USB chip powers by USB bus (close), or powers by external supply (open).

J20, Program boots from internal memory (open), or external memory (close).

• IsoMax™ language is required to boot from the internal flash program memory.
It only supports Mode 0 (A & B).

• CodeWarrior & other third party compilers can support Mode 0, and Mode 3
only.

CONTROLLED I/O’s

Port line PD0 controls the RED LED. At reset PD0 signal is tri-state, it forces the
inverter output, AC05 goes low, this makes the RED LED come on. When the port pin
is configured for output, a low signal will turn off the LED, and vice versa.

Port line PD1 controls the YELLOW LED. At reset PD1 signal is tri-state, it forces the
inverter output, AC05 goes low, this makes the YELLOW LED come on. When the port
pin is configured for output, a low signal will turn off the LED, and vice versa.

Port line PD2 controls the GREEN LED. At reset PD2 signal is tri-state, it forces the
inverter output, AC05 goes low, this makes the GREEN LED come on. When the port
pin is configured for output, a low signal will turn off the LED, and vice versa.

Port line PD3 controls the RS-485 transceiver. A pull down resistor normally enables the
receiver, if the port line is inactive. When the port pin is configured for output, a low
signal will enable the RS-485 receiver input. A high signal will enable the RS-485
transmitter output.

Port line PD4 controls the RS-232 receiver disable/enable. A pull down resistor normally
enables the receivers, if the port line is inactive.

Port line PD5 controls the RS-232 transmitter shutdown. A pull up resistor normally
enable the transmitter, if the port line is inactive.

Port line PE2 controls the CAN transceiver mode, high-speed mode or silent mode. A
pull down resistor normally selects high-speed mode, if the port line is inactive.

MEMORY MAP

Program Memory

Address (hex) Mode 0 (A)
 0000-0003 Boot Flash 1
0004-7FFF Program Flash 1
8000-EFFF Program Flash 2
F000-F7FF Program Ram
F800-FFFF Boot Flash 2

Address (hex) Mode 3 (IsoMax is not supported)
0000-FFFF External Program RAM

Data Memory

Address (hex) EX=0
0000-0FFF Internal Data Ram
1000-17FF Peripherals
1800-1FFF Reserved
2000-3FFF Internal Data Flash
4000-FF7F External Data Ram
FF80-FFFF Core Registers

Address (hex) EX=1 (IsoMax is not supported)
0000-FF7F External Data RAM
FF80-FFFF Core Registers

Address (hex) Mode 0 (B)
 0000-0003 Boot Flash 1
0004-6FFF Program Flash
7000-77FF Program RAM
7800-7FFF Boot Flash 2
8000-FFFF External Program Ram

DATA MEMORY PERIPHERAL REGISTER ADDRESS

Address Range (hex) Base Address (hex)
1000-100F SYS_BASE=1000
1010-10FF Reserved
1100-111F TmrA_BASE=1100
1120-113F TmrB_BASE=1120
1140-115F TmrC_BASE=1140
1160-117F TmrD_BASE=1160
1180-11FF CAN_BASE=1180
1200-121F PWMA_BASE=1200
1220-123F PWMB_BASE=1220
1240-124F DEC0_BASE=1240
1250-125F DEC1_BASE=1250
1260-127F ITCN_BASE=1260
1280-12BF ADCA_BASE=1280
12C0-12FF ADCB_BASE=12C0
1300-130F SCI0_BASE=1300
1310-131F SCI1_BASE=1310
1320-132F SPI_BASE=1320
1330-133F COP_BASE=1330
1340-135F PFIU_BASE=1340
1360-137F DFIU_BASE=1360
1380-139F BFIU_BASE=1380
13A0-13AF CLKGEN_BASE=13A0
13B0-13BF GPIOA_BASE=13B0
13C0-13CF GPIOB_BASE=13C0
13D0-13DF Reserved
13E0-13EF GPIOD_BASE=13E0
13F0-13FF GPIOE_BASE=13F0
1420-143F PFIU2_BASE=1420

For more detail about each individual register address, please see the DSP56F80x User’s
Manual link below,
http://www.freescale.com/files/dsp/doc/user_guide/DSP56F801-7UM.pdf

Instructions for Wiring a Serial Cable on J1 Connector
To use this option, RS-232 interface on SCI0. J15 must jumper on pin 1 & 2

 Transformer hook up Serial Cable hook up
Black w/Striped

White +VIN
1 2 SOUT

Solid Black GND 3 4 SIN
RST’ 5 6 ATN’
+5V 7 8 GND
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 22 PB6
PA7 23 24 PB7

+VIN 1 2 SOUT RED
GND 3 4 SIN ORANGE
RST’ 5 6 ATN’YELLOW
+5V 7 8 GND GREEN
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 22 PB6
PA7 23 24 PB7

 J1 Pin Preferred Color DB-9 Pin DB-25 Pin
 2 SOUT RED 2 RX 3 TX

 4 SIN ORANGE 3 TX 2 RX
 6 ATN YELLOW 4 DTR 20 DTR
 8 GND GREEN 5 GND 7 GND

 6 DSR 6 DSR
 7 RTS 20 RTS

TROUBLE SHOOTING

There are no user serviceable parts on the ServoPod-USB™. If connections are made
correctly, operation should follow, or there are serious problems on the board. As always,
the first thing to check in case of trouble is checking power and ground are present.
Measuring these with a voltmeter can save hours of head scratching from overlooking the
obvious. After power and ground, signal connections should be checked next. If the serial
cable comes loose, on either end, using your PC to debug your program just won’t help.
Also, if your terminal program has locked up, you can experience some very “quiet”
results. Don’t overlook these sources of frustrating delays when looking for a problem.
They are easy to check, and will make a monkey of you more times than not, if you
ignore them.

One of the great advantages of having an interactive language embedded in a processor,
is if communications can be established, then program tools can be built to test
operations. If the RS-232 channel is not in use in your application, or if it can be
optionally assigned to debugging, talking to the board through the language will provide
a wealth of debugging information.

The LED’s can be wonderful windows to show operation. This takes some planning in
design of the program. A clever user will make good use of these little light. Even if the
RS-232 channel is in use in your application and not available for debugging, don’t
overlook the LED’s as a way to follow program execution looking for problems.

The ServoPod-USB™ is designed so no soldering to the board should be required, and
the practice of soldering to the board is not recommended. Instead, all signals are brought
to connectors. That’s one of the reasons it is called a “Pod”, it can be plugged in and
pulled out as a module.

So, the best trouble shooting technique would be to unplug the ServoPod-USB™ and try
to operate it separately with a known good serial cable on power supply.

If the original connections have been tested to assure no out-of-range voltages are
present, a second ServoPod-USB™ can then be programmed and plugged into the circuit
in question. But don’t be too anxious to take this step. If the first ServoPod-USB™
should be burned out, you really want to be sure you know what caused it, before
sacrificing another one in the same circuit.

Finally, for advanced users, the JTAG connection can give trace, single step and memory
examination information with the use of special debugging hardware. This level of access
is beyond the expected average user of the ServoPod-USB™ and will not be addressed in
this manual.

NMITerm

Provided Windows terminal program from New Micros, Inc. Usually provided in a ZIP.
Un ZIP in a subdirectory, such as C:\NMITerm. To start the program: click, or double
click, the program icon.

NMITerm.LNK

NMITerm is a simple Windows-based communications package designed for program
development on serial port based embedded controllers. It runs under Windows.

NMITerm provides:

 1. Support for COM1 through COM16.
 2. Baud rates from 110 through 256000.
 3. Control over RTS and DTR lines.
 4. Capture files, which record all terminal activity to disk.
 5. Scroll-back buffer, editable and savable as a file.
 6. On-line Programmer's Editor.
 7. File downloader.
 8. Programmable function keys.

Quick start commands:

Baud: default 9600
DTR On/Off : ALT+T
Download: ALT+D

For further information use the Help screen.

This program can be downloaded from:
http://www.newmicros.com/download/software/NMI/NMITerm.zip

MECHANICAL

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings
Characteristic Symbol Min Max Unit
Supply voltage VDD VSS – 0.3 VSS + 4.0 V
All other input voltages, excluding Analog inputs VIN VSS – 0.3 VSS + 5.5V V
Analog Inputs ANAx, VREF VIN VSS – 0.3 VDDA + 0.3V V
Current drain per pin excluding VDD, VSS, PWM outputs,
TCS, VPP, VDDA, VSSA

I — 10 mA

Current drain per pin for PWM outputs I — 20 mA
Junction temperature TJ — 150 °C
Storage temperature range TSTG -55 150 °C

Recommended Operating Conditions
Characteristic Symbol Min Max Unit
Supply voltage VDD 3.0 3.6 V
MPU operating temperature TA -40 +85 °C

DC Electrical Characteristics
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL ≤ 50 pF, fop = 80
MHz
Characteristic Symbol Min Typ Max Unit
Input high voltage VIH 2.0 — 5.5 V
Input low voltage VIL -0.3 — 0.8 V
Input current low (pullups/pulldowns disabled) IIL -1 — 1 µA
Input current high (pullups/pulldowns disabled) IIH -1 — 1 µA
Typical pullup or pulldown resistance RPU, RPD — 30 — KΩ
Input/output tri-state current low IOZL -10 — 10 µA
Input/output tri-state current low IOZH -10 — 10 µA
Output High Voltage (at IOH) VOH VDD – 0.7 — — V
Output Low Voltage (at IOL) VOL — — 0.4 V
Output High Current IOH — — -4 mA
Output Low Current IOL — — 4 mA
Input capacitance CIN — 8 — pF
Output capacitance COUT — 12 — pF
PWM pin output source current 1 IOHP — — -10 mA
PWM pin output sink current 2 IOLP — — 16 mA
Total supply current IDDT 3
Run 4 — 126 162 mA
Wait 5 — 72 98 mA
Stop — 60 84 mA
Low Voltage Interrupt 6 VEI 2.4 2.7 2.9 V
Power on Reset 7 VPOR — 1.7 2.0 V

1. PWM pin output source current measured with 50% duty cycle.

2. PWM pin output sink current measured with 50% duty cycle.

3. IDDT = IDD + IDDA (Total supply current for VDD + VDDA)

4. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports
configured as inputs; measured with all modules enabled.

5. Wait IDD measured using external square wave clock source (fosc = 8 MHz) into XTAL; all inputs 0.2V from rail;

no DC loads; less than 50 pF on all outputs. CL = 20 pF on EXTAL; all ports configured as inputs; EXTAL capacitance
linearly affects wait IDD; measured with PLL enabled.

6. Low voltage interrupt monitors the VDDA supply. When VDDA drops below VEI value, an interrupt is generated.
For correct operation, set VDDA=VDD. Functionality of the device is guaranteed under transient conditions when
VDDA>VEI.

7. Power-on reset occurs whenever the internally regulated 2.5V digital supply drops below VPOR. While power is
ramping up, this signal remains active for as long as the internal 2.5V supply is below 1.5V no matter how long the
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is
reached, at which time it self regulates.

