StatiC v1.0

Language Reference Guide

(Motorola DSP56F80x Microcontrollers)

Updated: 25 January 2005

Peter F Gray
(petegray@ieee.org)

Page 1

1. Table of Contents

1. Table Of CONIENES ... 2
D © Y=Y o T USSR 3
2.1. Compiler Parameters and SWitChes ... 3
3. Program Structure — Sequential MOAE..............uviiiiiiiiiiiiiiiiiiiii .- 4
3.1. Procedure BIOCK STIUCIUIEuu i e e 4
3.2. Interrupt Routine BIOCK STrUCIUIEe s 4
3.3. Program BIOCK STrUCIUrE ..o 4
4. Program Structure — FSM MOGEcuuiiiiiiiiiiei e 5
4.1, Maching List ..o 5
S - (= I PSPPSR 5
4.3. Transition BIOCK STrUCIUIEoeiiiiiiei e e e 5
5. General Language TOPICScuueuiiiiuiiiiiiiieee ettt e et e e e e et e e e e e e e e e e eeas 6
ST I O 1 41 4= o1 £ SRR 6
5.2, COMPIIET DIFECHVES ...t a e e e 6
5.3, VAlADIES ... 6

Lo S O 1] =1 | £ 7
TR T o o To7 =Y U] 7
BB, SHAlEMENES ... 7
5.6.1. ASSIGNIMENTSot e e e e e s 7

LT T2 I o To] o 1= 7

S TG TR TR - 1| PP RSR 8
5.6.4. BranChiNg ...cooiieeeeieee e 8
5.6.5. Bit ShiftiNg ..oeiiieee e 8

B 7. OPEBIALOIS .. 9
5.7.1. Math OpPeratorscoooeiiiiiiee e 9
5.7.2. B00lan OpPeratorsccoooei i 9
5.7.3. Relational Operators ... 9
5.7.4. SpPeCial Operators.......ccoooiie i 9

LG TR [1Y o 111 9
5.9, SYNAX NOES ..., 9
5.9.1. Case Sensitivity ... 9
5.9.2. Ambiguous Operators and HieroglyphiCs...........coocuuiiiiiiiiiiiiiiiee e 9
5.9.3. BIOCK CIAIILY ...ttt e e 9

o O TR N = S 10
o0t I R 11 =Y = 10
6. FSM-specific Language TOPICS........uuiiiiiiiiieiiiiiie e e e 11
7. Code Example — Sequential MOGE............uuuiiiiiiiiiiiiiiiiiiiiiiieeieiiare e 12
8. Code EXample — FSM MOAEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieatiaaerae e s aaeaaaseaasesasesasssasensnsnnne 15
8.1 WY F M 2 ettt e e e e e e ettt e e e e e e e e e a e e e e e e e e e e e nbraraeaaaeeeeannnees 18
9. Performance and other considerationsccuuveiiiiiee i 19
9.1. Variables and ProCedUIES......... .. e 19
S 07 o] 1 4]][(] /TP O PP PRPPPPP 19
10. Using @ GUI / IDE With StatiCccoooiiiiiiiee e e e e e e e e 20
10.1. WINAOWS = CONTEXT ...t e e e e e e e et e e e e e e e e e e ennnneeeeeaaens 20
T0.2. LiNUX i 20

Page 2

2. Overview

The StatiC compiler supports both traditional sequential and Finite State Machine language
methodologies. This feature is automatically enabled when the compiler detects FSM constructs
within the source. Dual-methodology support allows software engineers to code, using an
identical syntax (but different language constructs) in either the ‘generic’ sequential mode or the
inherently multitasking FSM mode.

The sequential language is based on the familiar language constructs of C, Basic and Pascal —
with a unified and simplified syntax. The FSM language is the same as the sequential language,
except that it has additional FSM extensions. In addition, a command line switch permits the use
of C-style syntax and operators.

The compiler has been designed from scratch, specifically for the embedded domain, and
includes the features required to support both the sequential and FSM modes of operation. In
addition, the languages themselves have been enhanced to remove ‘clutter’ (such as
ambiguous operators) found in other languages, as well as incorporating some features more
suited for embedded software development.

The StatiC compiler can be hosted under Windows or Linux, and currently targets the Motorola
DSP56F80x microcontrollers.

2.1. Compiler Parameters and Switches
The compiler is invoked as follows —

static sourcename [switches]

by convention, StatiC FSM-mode programs have a filetype of .fsm and non-FSM programs have
a filetype of .nsm

Switches control the compiler operation, and are as follows...

-C Use C-style syntax (pointer / address-of operators, assignments, variable
declarations, loops, conditional branching)

-s$xxxx Specifies the initial SP value, in Hex (defaults if unspecified)
-m$xxxx Specifies the initial Machine SP value, in Hex (defaults if unspecified)
-a Allows loops and procedure within a

transition state ‘causes’ block (relaxes the strict FSM rules)
For example, to produce assembly language for source myprog.nsm —
static myprog.nsm
To produce assembly language for the FSM source myotherprog.fsm —
static myotherprog.fsm

Output is placed in the file postopt.txt
Page 3

3. Program Structure — Sequential Mode
A typical sequential program structure follows.

Comments

Directives

Constant Declarations

Global Variable Declarations
Procedures and Interrupt Routines
Program

O O O 0O O O

All items except the Program are optional. Comments can appear anywhere. Most Directives
can appear anywhere. Constants and Global Variables must appear prior to being referenced
(i.e. referenced from a Procedure or the Program). Procedures must appear before the
Program.

The Procedure and Program Block Structures follow. Optional elements are shown between
square braces “[“ and “]”. Keywords (reserved words) and symbols are bold-ed.

3.1. Procedure Block Structure
Defines the name, parameters, and code of a call-able routine.

Brogedure procedurename ([parameter_Tlist])
egin

Jocal variable declarations]

statements
end

Note that forward declarations of procedure block (i.e. prototypes) are allowed, and take the
following form —

procedure procedurename ([parameter_Tlist])

3.2. Interrupt Routine Block Structure
Defines the name and code of an interrupt routine.

interrupt procedurename ()

begin
statements
end
3.3. Program Block Structure
Defines the code of the main program.
program
begin
[Tocal variable declarations]
statements
end

Page 4

4. Program Structure — FSM Mode

A typical FSM program structure follows.

Comments

Directives

Constant Declarations

Global Variable Declarations
Machine List

State List

Transitions

Procedures and Interrupt Routines
Program

O 0O O O O O O 0 O

As you can see, many of the components of a FSM program structure are present in the
Sequential program structure. The extensions required for FSM mode are the Machine List,
State List, and the Transitions, which must appear in the order shown above.

4.1. Machine List

Simply lists the machines used in the application.

machines machinenamel, machinename2, .. machinenameN

4.2. State List

Simply lists the allowable application machine states.

states statenamel, statename2, .. statenameN

4.3. Transition Block Structure

Defines the conditions required for a state change, and the actions to perform when those
conditions are met.

transition statename
begin
condition expression
causes
statements
endcondition
end

Page 5

5. General Language Topics

5.1. Comments
StatiC comments are C-style, with a leading “/* and a trailing “*/”.

/* This is a StatiC Tanguage comment ¥/

/*

This is another StatiC language comment,
spread over multiple lines

*

StatiC single-line comments are C-style, with a leading “//” and terminating at end-of-line.

// this is a StatiC single-line comment

5.2. Compiler Directives

These tell the compiler to perform a specific action or check a specific condition. Most of the
common compiler directives are fairly generic, and so it is with StatiC.

#define DEFINITION_NAME DEFINITION_VALUE

causes the compiler to replace ‘DEFINITION_NAME’ with ‘DEFINITION_VALUE’ wherever it
appears in the source code. For the StatiC compiler, this is used for variable name substitution
and conditional compilation.

#ifdef DEFINITION_NAME

#endif

causes the compiler to compile the source code between the ‘#ifdef’ and ‘#endif’ directives, if
the specified definition name has been defined (using #define).

#asm

#endasm

causes the compiler to pass the code between the ‘#asm’ and ‘#endasm’ through to the
assembler.

#inline “Text”
causes the compiler to pass the text between the double-quotes through to the assembler.

#include filename
causes the compiler to “pull” the specified file into the source, at the location of the #include
directive. Included files can have a total maximum depth of 9 levels.

5.3. Variables

StatiC variables, like C, have what’s known as ‘scope’. This means that their visibility to different
parts of the source (procedures / program) depend upon the location of their declaration. Global
variables are declared prior to any procedure or program block. Local variables are declared
inside the block to which they are local. StatiC variables have a data type which is most

Page 6

appropriate for the memory architecture and instruction set of the target system. For the
DSP56F80x, it is a signed word.

word variablename size

Notice that variables have a ‘size’. This will be discussed later, when we cover arrays. It should
be noted that in FSM mode, all variables have global scope. For the DSP56F80x target, int and
char are synonyms for word.

If the C-style switch was used, the following syntax is required —

word variable

word variable[size]

5.4. Constants

Constants, in StatiC, are used to define an unchanging collection of data values. For example, a
‘welcome’ message used to display text via a serial communications interface.

const char msgla “welcome to the StatiC Demo program”
const 1int msglb 13,10,0

5.5. Procedures

These are blocks of functional code that may be call-ed from other blocks of code and allow the
optional passing of parameters. A special kind of procedure is supported using the keyword
‘interrupt’. This is, not surprisingly, a procedure that services an interrupt.

Prototyping — the forward declaration of a procedure — is allowed in StatiC.

5.6. Statements

Statements include fundamental language elements such as assignments, loops, conditional
branches and calls to procedures.

5.6.1. Assignments
These take the general form

LHS = RHS

Where LHS represents the Left Hand Side of the assignment (the target) and RHS represents
the Right Hand Side of the assignment (the source).

5.6.2. Loops

The C-style ‘while’ loop and ‘for’ loop are the StatiC language loop mechanisms. All other
fundamental loops (for, do, etc.) can be constructed from the while loop — the “for’ loop is simply
provided as a convenience.

while (expression)
Page 7

statements
endwhile

for (assignment; condition; final_assignment)
statements
endfor

5.6.3. Calls

This is the subroutine invocation mechanism of the StatiC language. Procedure parameters are
optional, but must match the number of parameters specified in the formal procedure definition.
The ‘call’ keyword is optional, as procedures can be invoked by referencing their name.

Examples

call myprocQ
call anotherproc (pl, p2, p3)
dothisproc()

5.6.4. Branching

All branching in StatiC is conditional, and takes the traditional if..then..else format, with single or
compound statements.

Examples
if (a>b) max = a endif

if (a > b) max a else max = b endif
if (a > b)
max = a
else
max = b
endif

The general form being

if expression
statements
else
statements
endif

5.6.5. Bit Shifting

Logical Shift Left and Logical Shift Right operations are available via the << and >> operators.
These operate on global and local variables, and parameters.

Example

varl = var2 >> 1

Page 8

shifts var2 one binary digit to the right, placing the result in var1.

5.7. Operators

5.71. Math Operators

Math operators include the fundamental math operators, + - / and * (add, subtract, divide and
multiply).

5.7.2. Boolean Operators
Boolean operators include | & ~ and ! (or, and, xor and not).

5.7.3. Relational Operators

Relational operators include >, <, =, >=, <=, and <> (greater than, less than, equal to, greater
than or equal to, less than or equal to and not equal to). In addition, != is a synonym for <>.

5.7.4. Special Operators

Special operators include @ (address of) and * (pointer). If the C-style switch is used, * and &
are the address-of and pointer operators.

5.8. Identifiers

An identifier is the name of something - a variable, constant, procedure, etc. All identifiers must
have a unique name, the one exception being global and local variable names. Global and local
references are determined by the rules of scope.

Identifiers must start with alphabetic character (a-z and A-Z), and can contain alphanumeric
characters (a-z, A-Z, 0-9) and “_’. Identifiers can be up to 16 characters in length.

5.9. Syntax Notes

5.9.1. Case Sensitivity
Identifiers, directives and keywords are case sensitive.

5.9.2. Ambiguous Operators and Hieroglyphics

Unlike C, StatiC does not contain ambiguous operators. Also, many of the C ‘hieroglyphics’ are
not present in the StatiC language - for example, the statement-ending semicolon and the
condition-related parentheses. Obviously, this is not true when the C-style switch is used.

5.9.3. Block Clarity

This has been improved — for the benefit of code support and enhancement — such that each
different code block has a terminator which distinguishes it from other block terminators. Never

Page 9

again will you waste time trying to figure out which ‘{* a particular ‘} is associated with - the end
of a statement block, a compound ‘if statement, a ‘while’ block, etc.

5.10. Arrays

Arrays are a collection of contiguous memory locations, referenced by a common name and a
subscript identifying an array element.

Example: a 4 word array called myarray —
word myarray 4
creates an array with elements myarray[0], myarray[1], myarray[2], and myarray[3].
If the C-style switch is used, the declaration becomes —
word myarray[4]
The general form for referencing an array element is —
arrayname[expression]
so, examples of valid assignment statements would be —

temp = xarr[count + 1]

Al[ref] = A2[pos]

5.11. Pointers

Pointers are declared thus —
datatype A pointername

for example
word Aptrl

declares a pointer to a word data type. If the C-style switch is used, the declaration becomes
word *ptrl

The use of a pointer simply means “the contents of whatever I'm pointing at”. Hence, the
following code...

word myvar 1
word Amyptr

myptr = &myvar
Amyptr = 7

...sets the variable ‘myvar’ equal to ‘7.

Page 10

6. FSM-specific Language Topics

FSM mode allows the use of Finite State Machine constructs, which are inherently multitasking.
An application typically consists of multiple machines which — at any point in time — exist in a
particular state. A good analogy would be that a machine is like a thread running in a process,
or, a machine is like a program running in a multitasking operating system.

The implementation of the FSM methodology requires that the software engineer lists the
allowable states of the machines in an application, defines the conditions whereby a machine
state transition occurs, and declares the name and initial state of each machine.

Each state and each machine has a unique name (they are, after all, identifiers).

State transitions are used to determine and execute a machine transition from one state to
another. They achieve this through the assignment of the reserved word ‘nextstate’ (in
conjunction with the machine name or ‘thismachine’) optionally executing additional code
during the transition.

Due to the very nature of state machines, a transition should not include loops or calls (i.e.
anything which may cause a transition to ‘hang’).

The StatiC compiler has limited FSM capabilities — 2 machines and 12 states — which is enough
to compile the FSM mode example program.

Page 11

7. Code Example — Sequential Mode

Here is a complete Sequential Mode StatiC program, which performs simple terminal I/0O and
allows the user to turn LED’s on and off. The target system is NMI's PlugaPod, which is based
on Motorola’s DSP56F803 chip.

// port
#define
#define
#define
#define
#define
#define
#define
#define
#define

// SCIO
#define
#define
#define
#define

A definitions for GPIO (LEDS)
PAPUR $0FBO
PADR $0FB1
PADDR $0FB2
PAPER $0FB3
PAIAR $0FB4
PAIENR $OFB5
PAIPOLR $0FB6
PAIPR $OFB7
PAIESR $OFBS8

definitions for terminal (RS232) interface
SCIOBR $0F00
SCIOCR $0FO01
SCIOSR $0F02
SCIODR $0FO03

// output a null-terminated string to SCIO
rocedure sciOoutput (word A optr)

egin

word ostat 1

while

Aoptr

ostat = ASCIOSR

while (ostat & $c000) <> $c000
ostat = ASCIOSR

endwhile

ASCIODR = Aoptr

optr

= optr + 1

endwhile

end

// read

a character from SCIO

procedure sciOinput (word A rchar)

begin

word ostat 1

ostat
while

= ASCIOSR
(ostat & $3000) <> $3000

ostat = ASCIOSR
endwhile
Archar = ASCIODR

end

// the main program

program

begin

word ichar 1

Page 12

ASCIOBR = 260 // baud 9600
ASCIOCR = 12 // 8N1

APAIAR = 0 // enable LEDs
APAIENR = 0

APAIPOLR = 0
APAIESR = 0

APAPER = $00F8

APADDR = $0007

APAPUR = $00FF

sciOoutput("LEDs on/off 1/2=Green 3/4=Yellow 5/6=Red.\n")

APADR = 0 // LEDs off

while 1 // loop forever
sciOinput (@ichar)
if (ichar = '1') APADR = APADR | $0004 endif
if (ichar = '2') APADR = APADR & $00FB endif
if (ichar = '"3') APADR = APADR | $0002 endif
if (ichar = '4') APADR = APADR & $00FD endif
if (ichar = '5') APADR = APADR | $0001 endif
if (ichar = '6') APADR = APADR & $00FE endif

endwhile

end

This program displays instructions, and then changes the LEDs (on/off) depending upon what
the user types at the keyboard. So, lets examine some of the code in detail.

From within the program block, you'll see the following statement —

word ichar 1

This declares a one word variable, ichar which is local to the program block. Next, the
statement —

ASCIOBR = 260 // baud 9600

This loads the SCI (Serial Communications Interface) baud rate register with the value ‘260’,
which sets the baud rate of the chip’s SCI module to 9600. The statement works this way
because

a) We defined SCIOBR, near the top of the program, to be $0F00 — which is the address (in
Hex) of the baud rate register for the PlugaPod.
b) We use the * operator

This could be thought of as meaning ‘load the contents of $0F00 with 260. It could also have
been written like this —

A$0F00 = 260

which would have achieved the same thing. However, it's good practice to

substitute definitions for register addresses because the registers do not always have the same
address within the same family of chips. Using definitions means that if you port your code to
another chip, which doesn’t have the same register address as the original, you'll only need to

Page 13

change the program in one place — in the #define directive. Besides, SCIOBR is a little more
meaningful than $0F00.

The program then sets the various GPIO (General Purpose Input Output) line control registers,
which are tied to the LEDs on the PlugaPod. Next, the statement —

sciOoutput ("LEDs on/off 1/2=Green 3/4=Yellow 5/6=Red.\n")

calls the SCI output routine, passing the address of the string as the parameter. sciOoutput is
coded to process the string passed to it, displaying the characters (via the SCI) to the terminal.

The program then enters a never-ending loop, reading the keystrokes and adjusting the LEDs
accordingly. The statement —

sciOinput (@ichar)

simply calls the SCI input routine, passing the address of the local variable ichar as the
parameter. The sciOinput routine is coded to wait for keyboard input and return what was typed
in the parameter passed to it.

Next, the character returned from the input routine is tested, and the LEDs are adjusted. The
statement —

if (ichar = '"1') APADR = APADR | $0004 endif

performs a ‘logical OR’ operation on the contents of the GPIO data register, if the user typed a
‘1" at the keyboard. OR-ing the data register with $0004 sets bit 2 ‘high’ which turns the green
LED ‘on’.

Let’s finish up by looking at one of the procedures, sciOinput —

ostat = ASCIOSR

while (ostat & $3000) <> $3000
ostat = ASCIOSR

endwhile

Archar = ASCIODR

This simply waits until the SCI status register (SCIOSR) indicates that a character has been
entered, and then puts the character into wherever rchar is pointing at.

You'll recall that we passed @ichar to the routine, and the formal declaration of the routine was

procedure sciOinput (word A rchar)

so the statement —
Archar = ASCIODR

actually stores the contents of the SCI data register (SCIODR) into ichar.

Page 14

8. Code Example — FSM Mode

Here is a complete FSM Mode StatiC program, which performs simple terminal I/O. Characters
entered on the keyboard are received by the microcontroller and echoed on a PC running a
terminal emulator. The target system is NMI's PlugaPod, which is based on Motorola’s
DSP56F803 chip.

// definitions for scI (RS232)
#define SCIOBR $O0F00
#define SCIOCR $0FO01
#define SCIOSR $0F02
#define SCIODR $0F03

// global variables
word appstate 1
word appchar 1

// application control definitions
#define APPSTATEINPUT 1
#define APPSTATEOUTPUT 2

// dgfine_the machines _
machines inputmachine,outputmachine

// list the states o _
states waitappinput,waitinput,waitappoutput,doappoutput

// describe the transitions
transition waitappinput

begin
condition appstate = APPSTATEINPUT
causes

nextstate[thismachine] = waitinput

endcondition

end

transition waitinput

begin
condition (ASCIOSR & $3000) = $3000
causes

appchar = ASCIODR
appstate = APPSTATEOUTPUT
nextstate[thismachine] = waitappinput
endcondition
end

transition waitappoutput
begin
condition appstate = APPSTATEOUTPUT
causes
nextstate[thismachine] = doappoutput
endcondition
end

transition doappoutput

Page 15

begin
condition (ASCIOSR & $C000) = $c000
causes
ASCIODR = appchar
appstate = APPSTATEINPUT
nextstate[thismachine] = waitappoutput
endcondition
end

// a procedure used at start-up, to display welcome message
procedure sciOoutput (word A optr)
begin

word ostat 1

while Aoptr
ostat = ASCIOSR
while (ostat & $Cc000) <> $c000

ostat = ASCIOSR

endwhile
ASCIODR = Aoptr
optr = optr + 1

endwhile

end

// the main program

program
begin
ASCIOBR = 260 // baud rate 9600
ASCIOCR = 12 // 8N1
sciOoutput ("StatiC FSM SCI Demo Ready.\n")
appstate = APPSTATEINPUT // the initial app state

init inputmachine waitappinput 10
init outputmachine waitappoutput 10

end

// at this point, all of the defined machines are 'running'

Skipping the parts we've already covered in the Sequential Mode example, let's examine the
code in detail.

Firstly, you'll notice that this application consists of two machines — inputmachine and
outputmachine. The ‘main’ part of the program...

ASCIOBR = 260 // baud rate 9600
ASCIOCR = 12 // 8N1

sciOoutput ("StatiC FSM SCI Demo Ready.\n")

appstate = APPSTATEINPUT // the 1initial app state

...simply sets up the SCI (Serial Communications Interface), displays a message, and sets the
global variable ‘appstate’ to be ‘APPSTATEINPUT’. This particular application is designed in
such a way that the two machines are cooperative, and the setting of ‘appstate’ determines their
transition to / from one state to another. Machines don’t have to behave this way, but it's useful,
for demonstration purposes.

Page 16

Once the program block — as described above — has been executed, all machines are activated.
That is to say, they’re put into their ‘initial state’ as determined by the machine definition
statements —

init inputmachine waitappinput 10
init outputmachine waitappoutput 10

So, inputmachine is put into ‘waitappinput’ state, and outputmachine is put into ‘waitappoutput’
state. Once in these states, they will remain in these states until the state transition conditions
have been satisfied. So, inputmachine is initially in ‘waitappinput’ state, which is described in the
transition block, thus —

transition waitappinput

begin
condition appstate = APPSTATEINPUT
causes
nextstate[thismachine] = waitinput
endcondition
end

However, appstate was defined as ‘APPSTATEINPUT’ in the main program block, so the
inputmachine’s transition condition is satisfied. This causes inputmachine to change states to
‘waitinput’.

You'll notice also that outputmachine’s initial state is ‘waitappoutput’, which is described in the
transition block, thus —

transition waitappoutput

begin
condition appstate = APPSTATEOUTPUT
causes
nextstate[thismachine] = doappoutput
endcondition
end

Unlike the inputmachine, outputmachine’s transition condition has not been satisfied, so no
state change takes place, and outputmachine remains in the ‘waitappoutput’ state.

At this point in time, outputmachine is waiting for its transition condition to be satisfied, and
inputmachine has changed state to ‘waitinput’. So, looking at the ‘waitinput’ transition block —

transition waitinput
begin
condition (ASCIOSR & $3000) = $3000
causes
appchar = ASCIODR
appstate = APPSTATEOUTPUT
nextstate[thismachine] = waitappinput
endcondition
end

We see that inputmachine will remain in this ‘waitinput’ state until a key has been pressed at the

keyboard (i.e. in the terminal emulator, running on the PC). The outputmachine is still waiting for
its transition conditions to be satisfied.

Page 17

When a key is pressed in the terminal emulator, inputmachine’s transition conditions are
satisfied, a character is read from the SCI data buffer into the global variable, appchar, the
appstate is set to ‘APPSTATEOUTPUT’ and inputmachine performs a state change back to
‘waitappinput’.

At this point, outputmachine’s state transition conditions have been satisfied (because appstate
was set to ‘APPSTATEOUTPUT’ by inputmachine), so outputmachine experiences a state
change from ‘waitappoutput’ to ‘doappoutput’. Looking at the ‘doappoutput’ transition block —

transition doappoutput
begin
condition (ASCIOSR & $C000) = $c000
causes
ASCIODR = appchar
appstate = APPSTATEINPUT
nextstate[thismachine] = waitappoutput
endcondition
end

We see that the outputmachine will wait until the SCI is ready to send, then it loads the SCI data
register with the global variables, appchar, sets the appstate to ‘APPSTATEINPUT’, and
performs a state change back to ‘waitappoutput’. While this is all happening, inputmachine does
nothing, because its state transition conditions have not been satisfied.

At this point in time, both machines are back in their initial states, and the whole cycle starts
again.

81. Why FSM?

Now, you may be thinking “Why on earth would anyone want to code like this?” and it's a
perfectly reasonable question. The answer is, because it's inherently multitasking. For example,
let’s say that you’ve coded the above example, and you want to also have your application
monitor an ADC reading and set a GPIO line high if the reading goes above a certain point... all
you have to do is add another machine. Want to send PWM signals? Add another machine.

There’s no difficult “Where on Earth do | put this new code so that the existing code still works?”
— machines run independently from each other (unless, of course, you deliberately design them
to be cooperative).

You simply create machines, as required, to perform the tasks you desire. Each machine runs
and changes state when its transition conditions are satisfied. All of the machines you define are
running at the same time — the same as a multitasking operating system — and performing
whatever function you’'ve designed them to do. This is the true power of FSM programming.

Page 18

9. Performance and other considerations

9.1. Variables and Procedures

Stack usage is costly, from both a speed and code size perspective. Local StatiC variables — as
with most compilers / languages — are located on the stack. Hence, if you want faster and
smaller code, avoid using local variables, i.e. use global variables wherever possible.

Additionally, it makes no sense to pass a global variable as a parameter to a procedure. Global
variables have global scope, so passing them to a procedure is simply a waste of stack space
and generates unnecessary assembly code.

9.2. Complexity

Complex statements may be too difficult for the compiler’s optimizer to rationalize into efficient
code. Additionally, the language parser may not be able to de-construct very complex
statements. Hence, more efficient assembly code will be generated if complex statements are
split into multiple, simpler, statements.

Page 19

10. Using a GUI / IDE with StatiC

10.1. Windows - ConTEXT

The use of a highlighting, language-sensitive editor is always beneficial. One such editor, for a
Windows host, is ConTEXT (http://www.fixedsys.com/context), which also includes functionality
to invoke compilers etc.

1€ ConTEXT - [D:\Static Test\testled. nsm] M=%
E File Edit View Format Project Toaols ©plions Window Help e
DO = i & [& 3 dh L8 @ 8 8 85 8y |StalicNsM) |v|@
@ testled_nsm l
* 26 4\
File Explorer | Favarites His[¢[» || 37 // read a character from SCIO0 :
dNStaticT asth D 28 procedure scilinput (rchar)
29 begin
= w Y B~ ; 40 word ostat 1
Parent [2568 exe= 41
=) a568.5 | =] 2568 tah 4z ostat = “SCI03ER
[£] clist.asm [£] ctrace. bt 43 while | ostat & $3000) <> 33000
[flash bat [Z] flash.log 44 ostat = “SCIOSE
BflashSDE.cfg ﬁflash_over_itag.ewe 45 enduhi le
[T static. 2= |1&] test1.fsm 46 “rchar = “SCIODR
@testled.nsm [£] wecB05.asm 47 end
zlportio. sy 43
43 program
E0 begin
£l word ichar 1
BE
53 “SCIOER = Z60 A4 haud D600
54 “SCIOCE = 12 /4 BNl
LE “PAIAR = O J¢ enskhle LEDs

56 “FLIENRE = O

57 “PAIPOLE = O

58 “FAIESR = O

59 “PAPER = $00FS

60 “PADDR = $0007 [w]

|
e
V

StatiC Cornpiler +0.10
Copuright (] 2004, Pete Gray [petearay(@iese. org). &l rights reserved.

Supster stack unspecified, uzing default ($0200).

Azgernbler type is DSPHES0R,

Mormal Mode.

(0 global mermary unitz allocated. 17 symbals found.

B2 source linez. 183 poodes generated (107 after oplimization).

» Execution finished.

Ln 73, Cal & Inzert Sel: Marmal Das File size: 1733

10.2. Linux

A large variety of highly configurable editors and IDE’s exist for Linux. My personal preference is
JED or EMACS.

Page 20

	Table of Contents
	Overview
	Compiler Parameters and Switches

	Program Structure – Sequential Mode
	Procedure Block Structure
	Interrupt Routine Block Structure
	Program Block Structure

	Program Structure – FSM Mode
	Machine List
	State List
	Transition Block Structure

	General Language Topics
	Comments
	Compiler Directives
	Variables
	Constants
	Procedures
	Statements
	Assignments
	Loops
	Calls
	Branching
	Bit Shifting

	Operators
	Math Operators
	Boolean Operators
	Relational Operators
	Special Operators

	Identifiers
	Syntax Notes
	Case Sensitivity
	Ambiguous Operators and Hieroglyphics
	Block Clarity

	Arrays
	Pointers

	FSM-specific Language Topics
	Code Example – Sequential Mode
	Code Example – FSM Mode
	Why FSM ?

	Performance and other considerations
	Variables and Procedures
	Complexity

	Using a GUI / IDE with StatiC
	Windows - ConTEXT
	Linux

