
1. Interrupt Handlers in High-Level Code
Interrupt handlers must be written in machine code. However, you can write a machine
code “wrapper” that will call a high-level IsoMax word to service an interrupt. This
application note describes how. You may find it useful to refer to the previous sections
Machine Code Programming and Using CPU Interrupts in the IsoPod.

2. How it Works
The machine code routine below works by saving all the registers used by IsoMax, and
then calling the ATO4 routine to run a high-level IsoMax word. The high-level word
returns to the machine code, which restores registers and returns from the interrupt.

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P, \ MOVE Y1,X:(SP)+
D08B P, \ MOVE A0,X:(SP)+
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P, \ MOVE B0,X:(SP)+
D70B P, \ MOVE B1,X:(SP)+
D38B P, \ MOVE B2,X:(SP)+
D80B P, \ MOVE R0,X:(SP)+
D90B P, \ MOVE R1,X:(SP)+
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(SP)+
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+
DF8B P, \ MOVE LA,X:(SP)+
F854 P, OBJREF P, \ MOVE X:OBJREF,R0
FA54 P, WP P, \ MOVE X:WP,R2
D80B P, \ MOVE R0,X:(SP)+
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on last push!
87D0 P, xxxx P, \ MOVE #$XXXX,R0 ; This is the CFA of the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved objref
FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:FWP
D854 P, OBJREF P, \ MOVE R0,X:OBJREF
FE9B P, \ MOVE X:(SP)-,LC
FD1B P, \ MOVE X:(SP)-,N
FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1
F19B P, \ MOVE X:(SP)-,B0
F29B P, \ MOVE X:(SP)-,A2

F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
F01B P, \ MOVE X:(SP)-,X0
EDD9 P, \ RTI
END-CODE

The only registers that are saved automatically by the processor are PC and SR. All other
registers that will be used must be saved manually. To allow a high-level routine to
execute, we must save R0-R3, X0, Y0, Y1, A, B, N, LC, and LA. Two registers that
need not be saved are M01 and OMR, because these registers are never used or changed
by IsoMax. We must also save the two variables WP and OBJREF, which are used by the
IsoMax interpreter and object processor.

Since the DSP56F805 processor does not have a “pre-increment” address mode, the first
push must be preceded by a stack pointer increment, LEA (SP)+, and the last push must
not increment SP.

The instruction ordering may seem peculiar; this is because a MOVE to an address
reigster (Rn) has a one-instruction delay. So we always interleave another unrelated
instruction after a MOVE x, Rn. Note also the use of the symbols ATO4 and OBJREF to
obtain addresses. The variable WP is located at hex address 0041 in current IsoMax
kernels, and this is defined as a constant for readability.

The value shown as “xxxx” in the listing above is where you must put the Code Field
Address (CFA) of the desired high-level word. You can obtain this address with the
phrase

 ' word-name CFA

	Interrupt Handlers in High-Level Code
	How it Works

