
1. I/O PROGRAMMING 
 
OK, so now you know how to make and run state machines using IsoMax.  Your state 
machines need to do something!  This is where the rich assortment of inputs and outputs 
on the ‘Pod™ comes into play.  You can use turn pins on and off, check logic levels, send 
pulse streams, measure time, read analog voltages, send and receive serial data, and 
control SPI (Serial Peripheral Interface) chips. 

All of the input/output functions of the ‘Pod™ follow a simple pattern: you specify the 
‘Pod™ pin, and then the action you want to perform.  If you’ve encountered object-
oriented programming before, this will be familiar to you.  You specify an object (an I/O 
pin), and then you perform a method (an input or output action). 

Syntax note: an object and method are always a pair.  Normally, they must appear 
together in your program.  We’ll explore some ways later to get around this limitation, 
but for now, remember that you must always specify both. 

1.1. Bit Output 
You’ve already seen examples of the simplest kind of I/O: turning an output pin on or 
off.  We used this in Section 4 to turn LEDs on and off.  The basic commands are 

pin ON 
pin OFF 
 

where “pin” can be any one of the following: 

REDLED GRNLED YELLED 
PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 
PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 
PD0 PD1 PD2 PD3 PD4 PD5 
PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 
TA0 TA1 TA2 TA3 
TB0 TB1 TB2 TB3 
TC0 TC1  
TD0 TD1 TD2 TD3 
PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5 
PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5 
 

That’s a lot of outputs!  But don’t look for TA0-3 and TB0-3 on the connectors.  These 
are dual-function pins, and on the connector are labeled differently: 

TA0 = PHASEA0  TB0 = PHASEA1 
TA1 = PHASEB0  TB1 = PHASEB1 
TA2 = INDEX0   TB2 = INDEX1  
TA3 = HOME0    TB3 = HOME1   
 



Also, on the V2 IsoPod, PD0, PD1, PD2 are the same as REDLED, YELLED, GRNLED 
(these are the pins that control the LEDs).  Pins PE0, PE1, PD6, PD7 are reserved for the 
SCI channels, and not available for simple I/O.  There are no pins TC2 and TC3.  

So, you can turn the red LED on with 

REDLED ON 
 
and turn it off with 

REDLED OFF 
 
What if you want to set an output on or off, depending on the value of a variable?  You 
could write an IF..ELSE..THEN using ON and OFF.  But a simpler solution is:  

n  pin SET Sets the output of the pin according to “n”.  If n is zero, 
turns the pin off.  If n is nonzero, turns the pin on.  (Zero 
and nonzero correspond to logical false and true.) 

 
So,  

 1 REDLED SET will turn the LED on, 
 0 REDLED SET will turn the LED off, and 
33 REDLED SET (or any nonzero number) will turn the LED back on. 

 
Perhaps you want to flip the state of the pin, but you don’t know whether it was 
previously turned on or off: 

pin TOGGLE will change the state of the pin.  If it was on, this turns it 
off.  If it was off, this turns it on. 

 
If you need to know whether a pin has been previously turned on or off, you can ask 
with: 

pin ?ON returns true if the pin has been turned on. 
pin ?OFF returns true if the pin has been turned off. 

 
We know, these are redundant, since ?OFF is the logical inverse of ?ON.  We give you 
both of them so you can use whatever makes your program most readable. 

1.2. Bit Input  
Many of the programmable output pins can be used instead as logic input pins: 

PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 
PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 
PD0 PD1 PD2 PD3 PD4 PD5 
PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 



TA0 TA1 TA2 TA3 
TB0 TB1 TB2 TB3 
TC0 TC1  
TD0 TD1 TD2 TD3 
 

Obviously the LEDs can’t be used as digital inputs.  And the PWM pins on the ‘Pod™ 
are permanently configured as output pins.  The rest of the Pxx and Txx pins can be 
used as inputs or outputs, under program control.   

There are 14 new pins that can only  be used as digital inputs:  

ISA0 ISA1 ISA2   
FAULTA0 FAULTA1 FAULTA2 FAULTA3 
ISB0 ISB1 ISB2 
FAULTB0 FAULTB1 FAULTB2 FAULTB3 
 

To read a digital input pin, you can use the commands 

pin ON? returns true if the pin is at a logic high. 
pin OFF? returns true if the pin is at a logic low. 

 
Again, these are just two different ways of looking at the same input.  Use whatever 
makes your program more readable. 

Note that these are not the same as the ?ON and ?OFF functions shown above.  There 
are two important differences: 

a) ?ON ?OFF return the last value that was written to the pin.  If the pin has been 
configured as an input, or as an open-collector output, this may not be the actual 
logic level!  ON? OFF? return the actual logic level on the pin. 

b) ON? OFF? will change the pin from an output to an input.  ?ON ?OFF will not 
change the pin’s configuration; if it was an output, it remains an output. 

The rule is this: use ?ON ?OFF for output pins.  Use ON? OFF? for input pins. 

We haven’t talked about how to configure a pin as a digital output or a digital input.  
That’s because you don’t have to – it’s automatic.  If you use one of the output words like 
ON or TOGGLE, IsoMax will automatically configure that pin as an output (if it hadn’t 
already done so).  Likewise, if you use ON? or OFF?, IsoMax will automatically 
configure that pin as an input.  (You can even switch a pin from output to input, or input 
to output, in your program…but that’s an unusual application.) 

1.3. Byte Input and Output 
Port A and port B on the IsoPod™ ,  ServoPod™ are 8-bit parallel I/O ports that are 
entirely available for you to use.  You can use the individual pins of these ports for 
single-bit input and output, as we’ve just described.  (The pin names are PA0-PA7 for 



port A, and PB0-PB7 for port B.)  Or, you can use either or both of these ports as 8-bit 
parallel ports. 

To tell IsoMax that you want to treat all 8 pins as a single byte, you use the port names: 

PORTA PORTB 
 
On port A, PA0 is the least-significant bit, and PA7 is the most-significant bit.  Likewise 
for port B. 

There are only two actions that you can perform on an 8-bit parallel port: 

port GETBYTE reads the 8-bit value from the (input) port 
port PUTBYTE writes an 8-bit value to the (output) port 

 
Again, the configuration is automatic.  When you use GETBYTE, all of the pins of the 
port are configured as inputs.  When you use PUTBYTE, all eight pins are configured as 
outputs. 

To turn all of the port A bits off, except PA7 which is turned on, you could use: 

HEX 80 PORTA PUTBYTE 
 
To test whether any of the low 4 bits of port B are on, you could use 

PORTB GETBYTE  HEX 0F AND 
 
which will return a nonzero value if any of the bits PB0-PB3 are high.  Here’s a trivial 
example of a program that makes the IsoPod™, ServoPod™  into an eight-bit inverter: 

PORTA GETBYTE  INVERT  PORTB PUTBYTE 
 
In this example, a byte is read from port A.  It is then logically inverted, and written to 
port B.  (Of course, this will only happen once.  To respond to changes in the port A 
inputs, this bit of code would have to be written in a loop, or into an IsoMax state 
machine, so that it is called repeatedly.) 

1.4. Serial Communications Interface (SCI) 
The ‘Pod™ includes two full-duplex asynchronous serial ports.  These are named 

SCI0  SCI1 
 
Note that you do not refer to the serial ports by their pin names, but by their port names.  
SCI0 is the RS-232 port that is connected to your PC for software development (pins 
SOUT and SIN on connector J1).  SCI1 is the RS-232/RS-422 port, pins SOUT1 and 
SIN1 on connector J4 (on the V1 IsoPod™, only RS-422 is available for this port). 



The basic operations on the serial port are TX and RX: 

 port TX  transmit one byte on the serial output  
 port RX  receive one byte on the serial input 
 
For example, to send the character “A” (hex 41) to the terminal (connected to the primary 
RS-232 port), you could use the command 

HEX 41  SCI0 TX 
 
To receive a character from the RS-422 port, and display its hex value, you could use 

SCI1 RX  HEX . 
 
But before you use SCI1, you must set its baud rate… 

1.4.1. Setting the Baud Rate 
When the ‘Pod™ is reset, it sets the SCI0 port to operate at 115,200 baud (or 9600 baud 
for V0.7 or earlier).  You can change this to some other value, say 38400, with the 
command 

DECIMAL 38400  SCI0 BAUD 
 
(Baud rates are normally written as decimal numbers.)  The moment you execute this 
command, the baud rate will take effect, so you won’t see the usual “OK” response.  
You’ll have to change the baud rate of MaxTerm or HyperTerminal (or whatever you are 
using) to the new rate.  Then you can press Enter and see the response at the new rate. 

Before you use the SCI1 port, you must set its baud rate.  For example, 

DECIMAL 9600  SCI1 BAUD 
 
For the baud rate, you can specify any value between 300 and 57600.  The “standard” 
baud rates 300, 600, 1200, 2400, 4800, 9600, 19200, and 38400 will be accurately set.  
For other values, the ‘Pod™ will give the best approximation that it can, within the limits 
of its baud rate generator.   

(The baud rate is produced by dividing 2.5 MHz by an integer.  Thus 9600 baud is 
produced by dividing 2.5 MHz by 260, which gives an actual rate of 9615.4 baud, close 
enough for serial communications.  But the closest we can come to 57600 baud is 
dividing by 43 to get 58140 baud.) 

1.4.2. Polling the SCI Status 
RX will wait for a character to be received, unless there’s already one waiting in the serial 
data register.  This may lead to “Program Counter Capture,” where the processor sits in a 



loop waiting forever for an external event. You want to avoid this when you write 
IsoMax programs! 

The solution is to poll the SCI receiver.  You do this with 

port RX? check to see if a receive character is available 

RX? will never wait.  It will instantly return a true (non-zero) value if a character is 
available, or a zero value if no character is waiting in the receiver.  It does not fetch the 
character from the receiver.  If RX? returns true, you must follow it with RX to get the 
character. 

We’ll see an example of how to use this soon. 

TX might also wait, if a previous character hadn’t finished transmitting.  But at least this 
wait won’t be indefinite: you know that the transmitter will send the character in a short 
time, and so you’ll have to wait at most one character period.  But this might also be a 
problem in IsoMax code, so you can check to see if the transmitter can accept a character 
with 

port TX? check to see if transmitter is ready for a character 

TX? will instantly return a true (non-zero) value if the transmitter can accept a character 
now.  It will return a zero value if the transmitter is busy, that is, if the transmitter is still 
sending the last character and can’t accept a new one yet. 

1.4.3. Serial Receive Buffering 
What happens if receive characters arrive faster than you’re checking for them?  With 
most serial ports, if a second character arrives before you’ve read the first one, you get an 
overrun condition and one of the two characters is lost.  This is a problem! 

Fortunately, the ‘Pod™ has a built-in solution for this problem.  If you wish, you can 
define a receive buffer which will hold characters until you’re ready to process them.  
This buffer can be as big as you like (limited of course by the amount of available RAM). 

To activate receive buffering, you must first reserve some RAM for the buffer. An easy 
way to do this is to define an IsoMax variable, and then immediately allocate some extra 
RAM for it.  To reserve a buffer of 20 (decimal) characters, you could type 

DECIMAL HERE 20 ALLOT CONSTANT BUFFER1 
 

You should be aware that this buffer will actually hold only 16 serial characters.  The 
reason is that 4 characters’ worth of storage will be used for control information.  So, 
when you are sizing your buffer, remember to add 4 for this “overhead.”  IsoMax won’t 
let you use a buffer size smaller than 5. 



Next you tell the ‘Pod™ where that buffer is located, how big it is, and what port to use it 
for. 

BUFFER1 20 SCI1 RXBUFFER 
 

This says that BUFFER1, with a length of 20, is to be used as the receive buffer for port 
SCI1.  (Note that you use the real buffer length, 20, and not 16.) 

That’s all there is to it!  The buffer is now active and will begin storing received 
characters.  None of your other serial code has to change: RX? will tell you if there’s a 
character waiting in the buffer, and RX will fetch the next character from the buffer. 

Specifying any address with a length of zero will disable the receive buffer and return to 
“unbuffered” operation.  For this, you can even use an address of zero, e.g., 

0 0 SCI1 RXBUFFER 
 

Returning to unbuffered operation will switch off the SCI receiver interrupt. 

1.4.4. Serial Transmit Buffering 
Transmitted characters will never get lost (at least not by the ‘Pod™), because the ‘Pod™ 
will always wait until it can send a character.  But in a Virtually Parallel application, that 
wait might prevent other tasks from being accomplished.  For example, if a particular 
state in a state machine needs to send a 16-character message at 9600 baud, that can add a 
16.7 millisecond delay – very noticeable when IsoMax is running state machines every 
10 milliseconds! 

Again, there is a built-in solution.  You you can define a transmit buffer which will hold a 
block of characters and then dole them out automatically to the SCI transmitter.  Again, 
your buffer size is limited only by RAM. 

Transmit buffering is activated the same as receive buffering.  First reserve some RAM 
for the buffer.  Of course, we can’t use the same buffer at the same time for transmitting 
and receiving, so we’ll define a new buffer for transmitting:  

DECIMAL HERE 20 ALLOT CONSTANT BUFFER2 
 

Next tell the ‘Pod™ where that buffer is located, how big it is, and what port to use it for. 

BUFFER2 20 SCI1 TXBUFFER 
 

This is just like the previous example except that we’re using BUFFER2, and we’re using 
it as a TXBUFFER (transmit buffer).  



That’s it!  The buffer is now active and will store characters that you transmit.  None of 
your other serial code has to change: TX? will tell you if there’s room in the buffer, and 
TX will transmit a character via the buffer. 

As before, specifying any address with a length of zero will disable the transmit buffer 
and return to “unbuffered” operation.  For example, 

0 0 SCI1 TXBUFFER 
 

Returning to unbuffered operation will switch off the SCI transmitter interrupt. 

1.4.5. Terminal I/O 
IsoMax uses serial port SCI0 for its to connect to a serial terminal (or a terminal program 
such as MaxTerm or HyperTerminal).  The “customary” terminal input and output 
operations still work in IsoMax, as follows: 

KEY performs the same function as SCI0 RX 
EMIT performs the same function as SCI0 TX 
?TERMINAL performs the same function as SCI0 RX? 
?KEY performs the same function as SCI0 RX? 
 

(?TERMINAL and ?KEY are equivalent. ?TERMINAL is the older name for this 
function, and is retained for backward compatibility.) You can freely intermix KEY and 
SCI0 RX, or EMIT and SCI0 TX, with no confusion. 

This also means that you can change the baud rate of the terminal with SCI0 BAUD.  
And, if you specify a receive buffer with SCI0 RXBUFFER, that also will be used for 
terminal input.  This is especially useful when downloading files to the ‘Pod.  

1.4.6. A Serial I/O IsoMax Example 
Here’s how you might use RX? in a state machine.  This machine will listen on serial port 
SCI1.  When it sees an ASCII “1” character (hex 31), it will turn on the red LED.  An 
ASCII “0” (hex 30) will turn off the red LED.  All other characters are ignored. 

At first you might be tempted to write the state machine this way: 

HEX 
MACHINE WATCHSCI1 
  ON-MACHINE WATCHSCI1 
    APPEND-STATE WAITCHAR 
    APPEND-STATE TESTCHAR 
 
IN-STATE WAITCHAR  CONDITION SCI1 RX?  CAUSES ( no action ) THEN-STATE 
  TESTCHAR TO-HAPPEN 
 
IN-STATE TESTCHAR  CONDITION SCI1 RX 30 = CAUSES  REDLED OFF  THEN-STATE 
  WAITCHAR TO-HAPPEN 



 
IN-STATE TESTCHAR  CONDITION SCI1 RX 31 = CAUSES  REDLED ON  THEN-STATE 
  WAITCHAR TO-HAPPEN 
 
WAITCHAR SET-STATE   INSTALL WATCHSCI1 
 
The first state, WAITCHAR, is fine.  The machine will stay in this state until a character is 
received.  But TESTCHAR won’t work, because it tries to read the SCI1 port twice. (Once 
for each condition.)  The first time it will get the character, but the second time it will try 
to read another character…and of course, there isn’t a second character. 

To solve this we need to use an auxiliary variable to hold the character.  Then we can 
read it only once, and test it several times. 

VARIABLE CMDCHAR 
HEX 
MACHINE WATCHSCI1 
  ON-MACHINE WATCHSCI1 
    APPEND-STATE WAITCHAR 
    APPEND-STATE TESTCHAR 
 
IN-STATE WAITCHAR  CONDITION SCI1 RX?  CAUSES  SCI1 RX CMDCHAR C! THEN-STATE 
  TESTCHAR TO-HAPPEN 
 
IN-STATE TESTCHAR  CONDITION CMDCHAR C@ 30 = CAUSES  REDLED OFF  THEN-STATE 
  WAITCHAR TO-HAPPEN 
 
IN-STATE TESTCHAR  CONDITION CMDCHAR C@ 31 = CAUSES  REDLED ON  THEN-STATE 
  WAITCHAR TO-HAPPEN 
 
WAITCHAR SET-STATE   INSTALL WATCHSCI1 
 
There’s one more possible problem with this machine.  What if we get a character that’s 
neither 30 nor 31?  We’ll see the character, and make the transition to TESTCHAR state.  
But since no condition is satisfied, we never leave TESTCHAR state!  Thus we never 
return to WAITCHAR state and we never accept another character.  This is a flaw in the 
design of our state machine; fortunately, it’s easily fixed by adding another transition: 

IN-STATE TESTCHAR  CONDITION CMDCHAR C@ 30 <  CMDCHAR C@ 31 > OR  CAUSES   
  ( no action )  THEN-STATE WAITCHAR TO-HAPPEN 
 

Now, if the character is neither 30 nor 31, the machine will perform no output, but it will 
return to wait for another character. 

1.5. Serial Peripheral Interface 
The ‘Pod™ includes a Serial Peripheral Interface (SPI) for communication with 
peripheral chips and other microprocessors.  For consistency with other usage, and to 
make provision for future expansion, the port is named  

 
SPI0 

 



The basic operations on the SPI port are TX-SPI and RX-SPI, TX-SPI? and RX-
SPI?: 

 port TX-SPI transmit one word on the SPI output  
port RX-SPI receive one word on the SPI input 
port TX-SPI? check to see if transmitter is ready for a word 
port RX-SPI? check to see if a received word is available 
 

However, an SPI port does not work like a normal serial port.  In the SPI port, the 
transmitter and receiver are linked.  Whenever you transmit a word, you receive a word.  
Also, the behavior of the port depends on whether you are operating as an SPI Master or 
an SPI Slave: 

Master – You start an SPI transaction by writing a word to the SPI transmitter (with 
TX-SPI).  Every time you do this, a word will be loaded into the receive register.  
So, after every TX-SPI, you should do an RX-SPI to read this received word and 
make the register ready for a new word.  (The receive register is loaded even if the 
slave device doesn’t output a reply.) 

Slave – You wait for data to be sent you to by the SPI Master.  When this happens, 
RX-SPI? will return true, and you can get the word with RX-SPI.  Any data that 
you want to send to the Master must be preloaded into the transmit register with TX-
SPI, because it will be sent as you are receiving the word from the Master.  Every 
time you receive a word, the transmitter will be emptied.  If you don’t load a new 
word into the transmitter, it will keep sending the last word you loaded. 

More differences are that the word size can range from 2 to 16 bits, and can be sent LSB-
first or MSB-first. 

1.5.1. Setting the SPI Parameters 
The Master and Slaves must agree on the SPI data format and rate.  These options are 
controlled by the following commands: 

n port MBAUD Sets the baud rate to “n” Mbaud, where n is 1, 2, 5, 
or 20.  (The actual rates are 1.25, 2.5, 5, or 20 
Mbaud, but the MBAUD command expects an integer 
value.)  The baud rate only needs to be set on the 
Master; this will automatically control the Slaves. 

n port BITS Specifies the number of bits “n” to be sent by TX-
SPI and read by RX-SPI.  n may be 2 to 16. 

port MSB-FIRST Specifies that words are to be sent and received 
most-significant-bit first. 

port LSB-FIRST Specifies that words are to be sent and received 
least-significant-bit first. 

 



Master and Slaves must also agree on clock phase and clock polarity.  In the DSP56F80x 
processors these are controlled by the CPHA and CPOL bits in the SPI Control Register.  
In IsoMax they are controlled with these commands: 

port LEADING-EDGE Receive data is captured by master & slave on the 
first (leading) edge of the clock pulse.  (CPHA=0) 

port TRAILING-EDGE Receive data is captured by master & slave on the 
second (trailing) edge of the clock pulse.  
(CPHA=1) 

port ACTIVE-HIGH Leading and Trailing edge refer to an active-high 
pulse. (CPOL=0). 

port ACTIVE-LOW Leading and Trailing edge refer to an active-low 
pulse. (CPOL=1). 

 
Once the communication parameters have been set, the SPI port should be enabled as 
either a Master or a Slave: 

port MASTER Enables the port as an SPI Master.  MOSI is output, 
MISO is input, and SS has no assigned function.  
(The SS pin may be used as GPIO output bit PE7.) 

port SLAVE Enables the port as an SPI Slave.  MOSI is input, 
MISO is output, and SS is the Slave Select input.  
SS must be low for the SPI port to receive and 
transmit data. 

 
Remember that the SPI port is not activated until you use MASTER or SLAVE. 

1.5.2. Serial Receive Buffering (version 0.6) 
Like the SCI ports, the SPI port may use a receive buffer.  The format and requirements 
are exactly the same as for the SCI port: the buffer must be at least 5 cells long, and is 
installed with the command 

address length port RXBUFFER 
 
This is particularly valuable on SPI Slaves, since data can be sent to them at any time 
from the Master.  If you don’t have a receive buffer on the Slave, you’d have to check the 
receiver constantly for new data…because if the transmitter sent two words before you 
checked, you’d lose one.  But even at 20 Mbaud, the buffered receiver won’t lose data – 
unless of course you overflow the buffer!  (The receive buffer uses interrupts, which 
means that the instant a full word has been received, the processor can store it in the 
buffer.) 

Buffering is less important on an SPI Master, because the Master always has complete 
control over when data will be received.  Data is received when data is sent!  But if 
you’re using a transmit buffer to send a block of SPI data without waiting, you should 



have a receive buffer at least as big, since every word send will cause a word to be 
received. 

When the receive buffer is active, RX-SPI and RX-SPI? work exactly as before. 

Specifying any address with a length of zero will disable the receive buffer and return to 
“unbuffered” operation.  For this, you can even use an address of zero, e.g., 

0 0 SPI0 RXBUFFER 
 

Returning to unbuffered operation will switch off the SPI receiver interrupt. 

1.5.3. Serial Transmit Buffering (version 0.6) 
 
The SPI port may also use a transmit buffer.  Again, the buffer must be at least 5 cells 
long, and is installed with the command 

address length port TXBUFFER 
 
This is valuable for Slaves, because the Slave doesn’t know when the Master will ask for 
a word of data.  (When the Master sends a word, it expects the Slave to return one.)  
When the transmit buffer is active in a Slave, the first word sent will be preloaded into 
the SPI transmitter.  Additional words will be held in the transmit buffer.  Each time the 
Master transfers a word over the SPI port, the Slave’s transmitter will be automatically 
loaded with the next word to be sent. 

You should be aware that some SPI applications can’t benefit from preloaded data in the 
buffer.  Sometimes, the slave must receive a command word from the Master, and then 
generate a reply based on that command.  In this case, we don’t know what to load into 
the transmitter until the received word has been processed, so we can’t “preload” a reply 
into the transmit buffer. 

Many SPI applications involve this kind of exchange, so often there is no advantage to 
transmit buffering on the Master.  The Master always has complete control over the data 
flow, so there’s no danger of its transmitter running out of data.  But if you are using the 
SPI transmitter to send a block of data, and you don’t want stop other Virtually Parallel 
processing, you could load the entire block into a transmit buffer. 

As before, specifying any address with a length of zero will disable the transmit buffer 
and return to “unbuffered” operation.  For example, 

0 0 SPI0 TXBUFFER 
 

Returning to unbuffered operation will switch off the SCI transmitter interrupt. 



1.5.4. An SPI Master-Slave Example 
Here’s a simple procedural program that configures an ‘Pod as an SPI Slave device.  It 
awaits a 16-bit value on the SPI port.  When it receives a 16-bit value, it treats that value 
as an address, fetches that location in Program memory, and then returns that 16-bit value 
the next time the Slave receives a word. 

DECIMAL  
VARIABLE TBUF 16 ALLOT 
VARIABLE RBUF 16 ALLOT 
 
: SLAVE-MAIN   
    16 SPI0 BITS  SPI0 MSB-FIRST  SPI0 TRAILING-EDGE  
    SPI0 ACTIVE-LOW  SPI0 SLAVE 
    TBUF 16 SPI0 TXBUFFER 
    RBUF 16 SPI0 RXBUFFER 
 
    \ simple SPI slave P-memory dump 
    \ 0000 = null command, discarded, no reply 
    \ nnnn = address.  On next xmit, send memory contents. 
    BEGIN ?KEY 0= WHILE 
      SPI0 RX-SPI? IF 
        SPI0 RX-SPI ?DUP IF 
            P@ SPI0 TX-SPI 
        THEN 
      THEN 
    REPEAT ; 
 
The outer loop of the program checks for a keypress on the RS-232 terminal input.  If a 
key is detected, the slave program terminates.  Otherwise, it checks to see if a word has 
been received on the SPI port with SPI0 RX-SPI?  If a word has arrived, it is obtained 
with RX-SPI.  If it is nonzero (tested with ?DUP), it is used as the address for P@ (fetch 
from Program memory), and the resulting data is sent to the transmitter with TX-SPI.  
The loop then continues. 

 
Observe that we don’t send anything in response to a 0000 command code.  This 
primitive SPI protocol depends on the Master and Slave staying in perfect 
synchronization.  Every word received generates one word of reply; and that reply word 
will be expected on the next transmission from the Master.  Should the Slave ever get 
“ahead” or “behind” the Master – say, by losing a word -- it will stay ahead or behind, 
indefinitely.  All but the very simplest SPI protocols must be designed to handle this 
problem, and recover automatically.  In this example, the Master can send 0000 codes to 
read out the Slave’s transmit buffer without refilling it with new data.  (A more 
sophisticated protocol might require a very specific message format with “command” and 
“data” bytes, checksums, and so forth.) 

Here’s the companion program which runs on a second ‘Pod as an SPI Master. 

: SEND ( x -- x' )    
    PE7 OFF  SPI0 TX-SPI  SPI0 RX-SPI   PE7 ON  ; 
 



DECIMAL 
: SLAVE@ ( a -- n ) 
    SEND DROP      ( send address, discard reply ) 
    250 0 DO LOOP  ( give slave time to respond ) 
    0 SEND         ( send null to fetch queued value ) 
; 
 
: RDUMP ( a n -- ) 
    16 SPI0 BITS  SPI0 MSB-FIRST SPI0 TRAILING-EDGE 
    SPI0 ACTIVE-LOW  1 SPI0 MBAUD  SPI0 MASTER 
    \ Remote slave P-memory dump 
    OVER + SWAP DO 
        CR I 5 U.R  2 SPACES 
        I 8 + I DO 
            I SLAVE@ 5 U.R 
        LOOP 
    8 +LOOP   
; 
 
The key word in this program is SEND.  Given a value on the stack, SEND will pull the 
Slave Select line low (active), transmit the value over the SPI port, receive the value 
which is returned from the slave, and then pull the Slave Select line high (inactive).  This 
assumes that the SPI ports of the Master and Slave ‘Pods are connected directly together, 
as follows: 

 Slave  Master 
 GND ↔ GND 
 PE4/SCLK ↔ PE4/SCLK  
 PE5/MOSI ↔ PE5/MOSI 
2.  PE6/MISO  ↔ PE6/MISO  
 PE7/SS ↔ PE7/SS 
 
Note that on the Slave, the PE7 pin is used as SS (Slave Select), and must be pulled low 
before the Slave will accept or send SPI data.  But on the Master, PE7 is just a general-
purpose output pin.  What we’re really doing is connecting the Slave’s SS input to the 
Master’s PE7 output….they just happen to use the same pin on the I/O connector. 

Remember also that every time the Master sends a word over the SPI, it will receive a 
word back.  This is handled by SEND which waits for the received word (with RX-SPI) 
after every transmission.  This performs another subtle but important function: you can’t 
pull Slave Select high until the SPI transmission is finished.  TX-SPI won’t wait for the 
16 bits to be transmitted; it will return as soon as they’re loaded into the transmit buffer.  
It will take over 12 microseconds (at 1.25 Mbaud) to send those bits!  But RX-SPI won’t 
have a result until 16 bits have been sent, and 16 bits received in reply.  So waiting for 
RX-SPI ensures that the transmission is complete.  For this application, it’s best that the 
Master not use transmit and receive buffers. 

SEND or something like it will probably be a key word in any SPI Master application.  
With it, we can construct SLAVE@ (“slave fetch”).  Given an address on the stack, 



SLAVE@ sends that to the Slave, and discards whatever the slave sends back (the reply is 
meaningless, since the Slave doesn’t have an address yet).  Then the Master must wait for 
a short delay, because the Slave has to have time to see that it has received a command, 
process the command, and put the reply in its transmit buffer.  Finally the Master sends a 
0000 command code.  The very action of sending this 0000 value will cause the data in 
the Slave’s transmit buffer to be sent back to the Master.  This is the reply we desire from 
the slave, so SLAVE@ returns with this on the stack. 

RDUMP (“remote dump”) is a command very much like DUMP, but it uses SLAVE@ to 
dump memory from the Slave via the SPI port.  Given an address ‘a’ and length ‘n’, the 
outer DO loop steps through the addresses 8 at a time.  The inner DO loop steps through 
each block of 8 addresses one at a time, fetches the data from the Slave, and prints that 
data. 

 Incidentally, note that we set the baud rate on the Master, but not on the Slave.  The 
Slave always follows the Master’s baud rate.  But MSB-FIRST, TRAILING-EDGE, 
and ACTIVE-LOW must be set independently on Master and Slave (and they must 
match). 

This program can be modified to return any kind of data from the Slave.  For example, 
the Master could send an ADC channel number, and the Slave could read that channel 
and send the result. 

2.1. PWM Output 
The IsoPod and ServoPod™ can generate pulse-width-modulated (PWM) square waves 
on 26 different output pins. These pins are  

TA0 TA1 TA2 TA3 
TB0 TB1 TB2 TB3 
TC0 TC1  
TD0 TD1 TD2 TD31 
PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5 
PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5 
 

You’ve already seen these pins; they can be used as simple digital outputs with the 
commands ON and OFF.  But these pins also have the ability to generate continuous 
PWM signals. 

You must specify two parameters for a PWM output: frequency, and duty cycle.  These 
are done with the commands 

n  pin PWM-PERIOD  
n  pin PWM-OUT 
 

                                                           
1 Early versions of IsoMax – before version 0.65 – cannot use pin TD3 for PWM operations.  On those 
IsoPods, TD3 may be used for bit I/O.  Current IsoPods allow all functions on TD3. 



PWM-PERIOD controls the frequency of the PWM signal.  (Actually, you’re controlling 
the period, which is the reciprocal of the frequency.)  This expects a value ‘n’ which 
represents ticks of a 2.5 MHz clock. You can compute the frequency of the output signal 
with the formula 

frequency (Hz) = 2,500,000 / N 

Thus a value of 2500 would give a frequency of 1 kHz.  A value of 25,000 would give a 
frequency of 100 Hz.  Alternatively, you can compute the period of the PWM signal with 
the formula  

microseconds =  N * 0.4  
 
GOTCHA #1.   For the timer output pins, TA0 through TD3, you can specify a period up  
to 65535 decimal.  This gives a frequency of about 38 Hz.  But for the PWM output pins, 
PWMA0 through PWMB5, you can only specify a period up to 32767 decimal, for a 
frequency of 76 Hz.  This may be too fast for some PWM devices (such as RC servos).  
We’ll see shortly how to get around this limitation. 

GOTCHA #2.  When you specify the period for one of the PWM output pins, you 
change the period for all six pins in that group (PWMA or PWMB).  In other words, if 
you set PWM-PERIOD for PWMA0, you are also setting it for PWMA1 through PWMA5.  
This is ordinarily not a problem, but you should be aware of it. 

Also, you’re not allowed to set the PWM-PERIOD to a value smaller than 4.  In other 
words, the maximum PWM frequency is about 625 kHz.2  But at that frequency you have 
only the coarsest control of duty cycle (in 25% steps).  To ensure that you have adequate 
PWM resolution when controlling the duty cycle, PWM-PERIOD should be 64 or greater. 

PWM-OUT controls the duty cycle of the PWM signal, and activates the PWM output.  It 
expects a value ‘n’ which is an unsigned integer in the range of 0 to 65535 (0 to FFFF 
hex).  This corresponds to a duty cycle from 0% to 100%.  So, 

        0 PWMB3 PWM-OUT sets the duty cycle to 0% (always off), 
 HEX FFFF PWMB3 PWM-OUT sets the duty cycle to 100% (always on), 
 HEX 8000 PWMB3 PWM-OUT sets the duty cycle to 50% on, and 
 HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on. 
 
This is independent of the PWM frequency.  A PWM-OUT value of HEX 8000 will 
always give a 50% duty cycle, regardless of what you’ve specified for PWM-PERIOD. 

You can turn off a PWM output by setting its duty cycle to zero, or by using the OFF 
command, e.g., 

PWMB3 OFF 

                                                           
2 Versions of IsoMax prior to 0.65 did not allow PWM-PERIOD smaller than 256. 



2.1.1. Half Speed Operation 
What if you need to control a bunch of RC servos with the PWMA and PWMB output 
pins, and they require a PWM frequency of 50 Hz?  Normally, these pins can’t produce 
anything less than 76 Hz.  But there’s one way to produce a slower output, and that is to 
slow the entire ‘Pod to half speed. 

The command HALFSPEEDCPU turns the ‘Pod’s master clock to half its normal 40 MHz 
speed.  This slows everything in the ‘Pod down to half speed.  Instructions will run half 
as fast.  If you specify 9600 BAUD for the serial port, you’ll actually get 4800 baud.  
And what’s most important, if you specify 100 Hz as the PWM output frequency, you’ll 
actually get 50 Hz.   

To specify 100 Hz PWM frequency, use the command 

DECIMAL 25000 pin PWM-PERIOD 
 
If you then type HALFSPEEDCPU you will see an output frequency of 50 Hz.  (You can 
specify HALFSPEEDCPU before or after PWM-PERIOD, it doesn’t matter.  Just 
remember that it will also require you to change your terminal’s baud rate.) 

If for any reason you need to return to normal “full speed” operation, the command is 
FULLSPEEDCPU. 

2.1.2. Output Polarity 
For the timer output pins TA0 through TD3 only, you can control the polarity of the 
output signal. 

    pin ACTIVE-HIGH makes the pin “active high” (the normal case).  
Specifying a duty cycle of 25% (hex 4000) will 
make the pin on for 25% of the time. 

 
    pin ACTIVE-LOW makes the pin “active low.” Specifying a duty cycle 

of 25% (hex 4000) will make the pin off for 25% of 
the time. 

 
You can’t do ACTIVE-HIGH or ACTIVE-LOW for the PWMxx output pins, but you 
don’t need to.  To invert the sense of the output, all you need is to do a one’s complement 
(INVERT) of the value you’re specifying for PWM-OUT.  For example, 

HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on, but 
 
HEX 4000 INVERT PWMB3 PWM-OUT   sets the duty cycle to 75% on, which is 

the same as setting it to 25% off. 
 



So, you might ask, why bother?  ACTIVE-HIGH and ACTIVE-LOW are really intended 
for PWM input, which will be described in the next section. 

 

2.1.3. Complimentary PWM Output 
(Version 0.65 and later) 

The PWMAx and PWMBx output pins have the ability to operate as complimentary 
pairs.  This means that while the even-numbered pin is high, the odd-numbered pin is 
low, and vice versa. 

    pin COMPLIMENTARY puts the pin (and its paired pin) in complimentary 
mode.  This can be used on either pin of the pair, 
and it affects both; e.g., you can use either  PWMA0 
COMPLIMENTARY or  PWMA1 COMPLIMENTARY  
(you don't need to use both, but no harm is done if 
you do).   

 
PWM output is controlled by the even numbered PWM channel, e.g., PWMA0 in this 
example.  So to output a complimentary signal on PWMA0 and PWMA1, you could write 

DECIMAL 25000 PWMA0 PWM-PERIOD 
PWMA0 COMPLIMENTARY 
HEX 4000 PWMA0 PWM-OUT 
 

This will output a 25% PWM signal on PWMA0 and a 75% signal (the complimentary 
signal) on PWMA1.  You do not need to issue a separate command for PWMA1.  To return 
the pins to separate operation, use the command: 

 
    pin INDEPENDENT puts the pin (and its paired pin) in independent 

mode. Again, this can be used on either pin of the 
pair, and affects both.   

 
Note that using a PWM pin for programmed digital output, with ON OFF SET or 
TOGGLE, will automatically set the pin to independent mode. 

Why would you use a pair of pins to produce complimentary PWM signals?  Some motor 
drive circuits require complimentary PWM signals, and this can save you from having to 
add an inverter chip.  But the real value of this feature is that it lets you create 
nonoverlapping PWM signals: signals which are never both “on” at the same instant.  
You do this by specifying a “dead time,” which is the time after one output turns off, 
before the other output turns on.  (During the deadtime, both outputs are off.) 

    n  pin DEADTIME sets the deadtime register.  Like PWM-PERIOD, this 
affects all six channels of the PWM group.  No 



special processing is done; the value (0 to 255) is 
just stored in the deadtime register.  This only 
affects pins in complimentary mode. 

 
A value of 0 given no deadtime, and 255 gives maximum deadtime.  The exact amount of 
deadtime introduced depends on many factors, including the PWM period, and its 
computation is described in detail in the Motorola DSP56801-7 Users’ Manual. 

2.2. PWM Input 
 
The IsoPod  and  ServoPod™ can also measure pulse-width-modulated (PWM) square 
waves on the 14 timer pins: 

TA0 TA1 TA2 TA3 
TB0 TB1 TB2 TB3 
TC0 TC1  
TD0 TD1 TD2 TD33 

 
The commands to measure a PWM pulse width are  

pin SET-PWM-IN to start measurement, and 
pin CHK-PWM-IN  to get the result. 

 
SET-PWM-IN makes the specified timer pin an input, and puts it into the pulse-width-
measurement mode.  It will do nothing until it sees a rising edge on the input.  Then, it 
will measure the time that the input is high.  The falling edge after a rising edge ends the 
time measurement. 

CHK-PWM-IN gets the result of the time measurement.  If the rising edge has not yet 
been seen, or if the “high” width is still being measured (i.e., the falling edge hasn’t been 
seen), CHK-PWM-IN will return a value of zero.  After a complete pulse has been 
received (rising edge, then falling edge), the first use of CHK-PWM-IN will return the 
width of that pulse, which will be nonzero.   

BEWARE: if you then use CHK-PWM-IN again, without resetting the timer, you will get 
an unpredictable nonzero value.  Only the first nonzero value returned by CHK-PWM-IN 
is valid.  After you receive that value, you must reset the timer with SET-PWM-IN. 

The value returned by CHK-PWM-IN is an unsigned integer, representing ticks of a 2.5 
MHz clock.  This is the same timebase used for PWM output.  Each tick of this clock 
takes 0.4 microseconds.  So, the measured pulse time can be computed with the formula  

 microseconds =  N * 0.4  

                                                           
3 Prior to version 0.65, pin TD3 could not be used for PWM operations.  On those IsoPods, TD3 may be 
used only for bit I/O. 



If you measure a pulse input of 25000 decimal, you know that this is 10 milliseconds.  

The PWM measurement has been divided into two actions (“set” and “check”) to avoid 
the problem of Program Counter Capture.  We don’t want our IsoMax program to sit 
waiting for a pulse to be measured -- especially if the pulse never arrives!  Instead we 
have two commands, SET-PWM-IN and CHK-PWM-IN, which are guaranteed to always 
execute immediately.  You can test CHK-PWM-IN to cause a state transition when the 
pulse has been received. 

2.2.1. Input Polarity 
SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is high. What if 
you need to measure the time that the input pin is low?  This is where you need to change 
the polarity of the pin: 

    pin ACTIVE-HIGH makes the pin “active high” (the normal case).  The 
PWM-IN commands will measure the high duration 
of a pulse. 

  
    pin ACTIVE-LOW makes the pin “active low.” The PWM-IN 

commands will measure the low duration of a pulse. 
 
So, actually, SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is 
“active.”  ACTIVE-HIGH and ACTIVE-LOW define whether “active” is a high level or a 
low level. 

 
Incidentally, note that these words aren’t limited to measuring the “active” time (duty 
cycle) of a PWM signal.  Really they measure pulse width.  So they can be used to 
measure the width of a single pulse, too. 

2.2.2. Example 
Here’s a simple procedural program that starts, and waits for, a PWM measurement on 
pin TA0: 

 
: MEASURE-PWM ( -- n ) 
    TA0 SET-PWM-IN 
    BEGIN TA0 CHK-PWM-IN ?DUP UNTIL ; 
 
The key to this program is the phrase ?DUP UNTIL.  If  TA0 CHK-PWM-IN returns a 
zero value, UNTIL will see this and continue looping.  But when TA0 CHK-PWM-IN 
returns a nonzero value, ?DUP will make an extra copy, and UNTIL will terminate the 
loop.  Then the extra copy of this value is left on the stack.  This way, CHK-PWM-IN is 
only called once with a nonzero result. 



2.3. Analog-to-Digital Conversion 
Eight pins on the ‘Pod can be used to input analog voltages: 

ADC0   ADC1   ADC2   ADC3   ADC4   ADC5   ADC6   ADC7 
 
The command to read an analog value (that is, to perform an A/D conversion) is 
ANALOGIN. 

    pin ANALOGIN Reads the given A/D input and returns its value.   
 
ANALOGIN will return a result in the range 0-7FF8 hex, or 0-32760.  This is actually a 
12-bit A/D result that has been left-shifted 3 places, to use the full range of signed 
integers (0 to +32767).   

A value of 32760 corresponds to an input of Vref (normally 3.3 volts).  0 corresponds to 
an input of 0 volts.  So, the actual voltage read on the pin can be computed with the 
formula 

 Vin = 3.3 * N / 32760 

2.4. Quadrature (Position) Decoders 
(Version 0.63 and later) 

The IsoPod and ServoPod™ can read up to seven position encoders, on 14 pins.  Each 
encoder uses a pair of pins.  Two encoders can be connected to dedicated quadrature 
decoders: 

object name  pins used for phase A, B 
QUAD0    PHASEA0, PHASEB0 
QUAD1  PHASEA1, PHASEB1 
 

The remaining five position encoders can be connected to pairs of timer inputs.  Timers 
are always used in pairs, “n” and “n+1”, for this purpose.  When you use timer as a 
position decoder, your code should always refer to the first timer of the pair: 

 object name  pins used for phase A, B 
TA2   TA2, TA3 (INDEX0, HOME0) 
TB2   TB2, TB3 (INDEX1, HOME1) 
TC0   TC0, TC1 
TD0   TD0, TD1 
TD2   TD2, TD3 
 

Each encoder uses a pair of input pins, called “phase A” and “phase B.”  These can be 
either quadrature encoded digital inputs (that is, square waves 90° out of phase), or can 
be separate “count” and “direction” inputs.   



If you use quadrature encoding, phase A is the leading phase for a shaft rotating in the 
positive direction, and phase B is the trailing phase.  Every edge on either phase A or 
phase B will cause a count. 

up

phase A

phase B

count up up up up up down
down

down
down

down
down

down

QUADRATURE COUNTING  

If you use “count” and “direction,” the count input is always the phase A pin; positive 
edges (low-to-high transitions) are counted. The direction input is always the phase B 
pin; a logic low means count up, and a high means count down. 

up

phase A

phase B

count up down down

COUNT-AND-DIRECTION COUNTING  

The commands to control position decoding are: 

pin QUADRATURE Sets a pair of pins to the quadrature-decoding 
mode.  The acceptable pin names are QUAD0, 
QUAD1, TA2, TB2, TC0, TD0, and TD2.4 

 
pin SIGNED Sets a pair of pins to the count-and-direction mode. 

The acceptable pin names are the same as for 
QUADRATURE. 

                                                           
4 Strictly speaking, you could also specify pins TA0 or TB0 for quadrature input.  But this is pointless, 
because these use the same input pins as the dedicated quadrature decoders QUAD0 and QUAD1. If you do 
specify TA0 or TB0, IsoMax will use the timer registers for counting instead of the dedicated decoder 
registers.  There’s no good reason to do this.  Use QUAD0 and QUAD1 instead. 



 
pin RESET Resets the position counter to zero. 
 
pin POSITION Returns the current position, as a signed double-

precision integer on the stack.  The position counter 
is a signed 32-bit counter. 

 
You must specify a decoder mode (QUADRATURE or SIGNED) before you can use 
RESET or POSITION.  So, the normal procedure for reading a position encoder is, first, 
specify the mode, second, reset the position to zero, and then read the position as desired. 
For example: 

QUAD0 QUADRATURE 
QUAD0 RESET 
QUAD0 POSITION D.    ( prints 0 ) 

   (move shaft) 
QUAD0 POSITION D.    ( prints new shaft position ) 
 . . . 
 
TD0 SIGNED 
TD0 RESET 
TD0 POSITION D.    ( prints 0 ) 

  (move shaft) 
TD0 POSITION D.    ( prints new shaft position ) 
 

Note the use of D. to print a signed double-precision integer. 

Warning: if you use one of the timer pins for output – including the timer pins shared 
with the QUAD0 or QUAD1 decoders – then that will interfere with the use of that pin for 
decoder input.  For example, if you say TA0 ON, that will interfere with the QUAD0 
decoder.  If you say TA3 OFF, that will interfere with the TA2 decoder (since TA2 is 
paired with TA3 as a decoder). 

Also, using one of the timer pins for input will disable the quadrature counter for that pin, 
so you shouldn’t use any of the input functions (like ON? and OFF?). 

Position decoding is done with dedicated counter hardware, so it does not require 
software intervention to keep an accurate count.  The POSITION value will always be 
accurate, regardless of how frequently you read it. 

2.4.1. MinPod Encoder Inputs 
The MinPod has fewer input pins, and can read up to three position encoders: 

object name  pins used for phase A, B 
QUAD0    PHASEA0, PHASEB0 
TA2   TA2, TA3 (INDEX0, HOME0) 
TD1   TD1, TD2 



 
This takes advantage of the fact that a “1-2” timer pair can be used for quadrature 
decoding, as well as a “0-1” or a “2-3” pair.  This capability exists on all IsoPod and 
ServoPod™ boards, but it’s only important on the MinPod5. 

2.4.2. Index and Home 
The “index” and “home” functions of the two dedicated quadrature counters (QUAD0 
and QUAD1) are not supported by IsoMax.  If you need to use these features, you will 
need to program the Quadrature Decoder registers explicitly for this.  (Refer to Chapter 
10 of the Motorola DSP56F801/3/5/7 Users’ Manual.) 

Note that if you use the INDEX0, HOME0 INDEX1, or HOME1 pins for index or home 
functions, you cannot use these pins as timer or counter inputs. 

2.5. “Software UART” Serial I/O 
(Version 0.69 and later) 

Sometimes you need more than the two serial channels SCI0 and SCI1.  Beginning with 
IsoMax version 0.69, you can use the port E GPIO pins for asynchronous serial input 
or output: 

 PE2 PE3 PE4 PE5 PE6 PE7 
 
To use one of these pins for serial I/O, you must first specify that the pin is to be used for 
serial data, and whether the pin is an input or an output: 

 pin IS-TX  enables the given pin for serial output  
 pin IS-RX  enables the given pin for serial input 
 
This step is very important.  If you don’t enable the pin for serial input or output, the 
remaining serial functions will malfunction, and may even freeze the ‘Pod.  (You won’t 
damage the ‘Pod, but you might have to press RESET or cycle its power.)  So 
remember to use IS-TX or IS-RX.  If you are creating an application which will 
autostart, be sure to put the required IS-TX and IS-RX statements in your initialization 
code. 

Of course, a single pin can be either an input or an output, but not both at the same time.  
To create a full-duplex serial port you will need to use two pins.  For example, you might 
use PE2 for serial input and PE3 for serial output: 

PE2 IS-RX   PE3 IS-TX 
 

                                                           
5 Of course, any timer can only take part in one pair.  You can’t use TD0-TD1 and TD1-TD2 on an IsoPod, 
for example.  You couldn’t connect four encoder signals to three timer pins anyway. 



2.5.1. Setting the Baud Rate 
You must also specify the baud rate for each pin.  There is no default baud rate!  Before 
you can use a pin for serial input or output, you must set its baud rate.  You do this with 
the same command you used for the SCI ports: 

DECIMAL  9600 PE2 BAUD  9600 PE3 BAUD 
 

Note that you must specify the baud rate for each pin.  Since the pins are completely 
independent, you can specify different baud rates for each.  You can specify a baud rate 
from 300 to 57600 (decimal), but remember the following two restrictions: 

RESTRICTION #1.  The actual baud rate will be an integer division of a 625 kHz clock, 
that is, 625000/N.  You can specify any baud rate, and the ‘Pod™  will give you the 
nearest baud rate it can attain.  But for some rates this will be a poor approximation.  You 
can’t get very close to 19200, 38400, or 57600; attempting to use these baud rates will 
give poor performance.  The highest “standard” rate that is accurately supported is 9600 
baud (625000/65).  Certain baud rates, like 31250 baud, can be exactly reached. 

RESTRICTION #2.  Because these serial data streams are being sent and received by 
software, they put a load on the CPU.  This load depends on the baud rate.  The limit is a 
total of approximately 60,000 bits per second, all pins combined.  So, you can run six 
pins simultaneously at 9600 baud (6*9600 = 57600). 

2.5.2. Sending and Receiving Serial Data 
The basic operations on the serial port are TX and RX: 

 pin TX  transmit one byte on the serial output  
 pin RX  receive one byte on the serial input 
 
These work the same as the TX and RX operations on the SCI port.  The data format is 
fixed as 8 data bits, 1 stop bit, no parity. 

Two cautions to keep in mind: 

CAUTION #1.  If you attempt to transmit on a pin which has not been enabled for 
transmission with IS-TX, TX will wait forever for a "transmit ready"  condition.  It is 
safest to check with TX? before sending a character.  (See the next section.) 

CAUTION #2.  If you attempt to receive on a pin which has not been enabled with IS-
RX, RX will wait forever.  It will not see any serial data sent to that pin.  It is safest to 
check with RX? before receiving a character.  (See the next section.) 



2.5.3. Polling the Serial Status 
RX will wait for a character to be received, unless there’s already one waiting in the serial 
data register.  This may lead to “Program Counter Capture,” where the processor sits in a 
loop waiting for an external event. Even worse, if you forget to initialize the pin with 
IS-RX, the program will never see the serial input data, and will wait forever. 

To avoid this, poll the pin before attempting to read it.  You do this with 

pin RX? check to see if a receive character is available 

RX? will never wait.  It will instantly return a true (non-zero) value if a character is 
available, or a zero value if no character is waiting in the receiver.  It does not fetch the 
character from the receiver.  If RX? returns true, you must follow it with RX to get the 
character.  For example, the phrase: 

PE2 RX?  IF  PE2 RX  ELSE  -1  THEN 
 

will safely check to see if a byte has been received on PA0.  If so, it will return the byte; 
if not, it will return -1.  In an IsoMax state machine, you might want the condition PE2 
RX? to cause a transition to another state, and then read the received character in that new 
state. 

TX might also wait, if a previous character hadn’t finished transmitting.  And if the pin 
hasn’t been enabled with IS-TX, TX will wait forever!  So, even for serial output, it’s 
best to poll the pin.   

pin TX? check to see if transmitter is ready for a character 

TX? will instantly return a true (non-zero) value if the transmitter can accept a character 
now.  It will return a zero value if the transmitter is busy, that is, if the transmitter is still 
sending the last character and can’t accept a new one yet.  You could use this in 
procedural code to do something else while waiting: 

   ( data ) BEGIN  do-something-else  PE3 TX? UNTIL  PA1 TX 
 
but the most effective way to use this is within an IsoMax state machine.  When the 
condition PE3 TX? is true, you can cause a transition to a new state that outputs the 
data. 

2.5.4. Serial Buffering  
When a GPIO pin is used for serial input, it has a single-character buffer.  The first 
character received is held in a buffer while the second character is being shifted in.  As 
soon as the second character is completely shifted in, it will be transferred to the receive 
buffer.  So, you have only one byte period (ten bit periods) to notice and read the 
received character. 



GPIO pins used for serial output are not buffered.  You cannot send another character 
until the first character has been completely shifted out (including its stop bit).  This 
means that -- unless you sit in a very tight loop waiting to do output – you will not 
achieve the full theoretical data rate for the serial channel.  There will always be short 
delays between characters.  Normally this is not  problem, but you should be aware of 
this limitation. 

The GPIO pins do not have the ability to define larger buffers with RXBUFFER and 
TXBUFFER. 

If you are expecting a continuous stream of serial data at high baud rates, you should use 
the SCI0 or SCI1 ports.  The GPIO pins are better suited to lower baud rates, or to 
protocols (such as half-duplex or packet transmission) where the arrival of data can be 
predicted. 

2.5.5. Stopping and Starting the Serial Engine 
Normally it will not be necessary to stop the software “engine” that does serial I/O.  
When there is no serial input or output activity on the GPIO pins, the engine will 
automatically go into a quiescent state and will use no CPU cycles. 

For debugging purposes, though, you can shut off the engine with the command 

 SSTOP turn off the serial I/O processing 

You turn the software engine back on with the command 

 SSTART initialize and activate the serial I/O processor 

CAUTION #3.  You will need to do this if you do a COLD or a SCRUB.  As a safety 
feature, COLD and SCRUB turn off all timer functions, including all IsoMax state 
machines and the serial engine.  So after you do a COLD, the serial I/O functions will not 
work until you either do SSTART or reset the processor. 

2.6. Indexed Pin I/O (Pin Numbering) 
(Version 0.68 and later) 

Sometimes you’d like to refer to the input/output pins by number instead of by name.  
Perhaps you need to write a program that receives a number N from 0 to 7, and must send 
back the current value of analog input N.  Or perhaps you want to treat eight input bits as 
an array.  To enable this kind of programming, IsoMax now supports pin numbering. 

To reference a pin by number, you use the phrase 

n PIN 
 



instead of the pin’s name.  “n” need not be explicitly written.  It can be fetched from a 
variable, or from a loop index, or the result of a calculation. 



2.6.1. Pin Numbering 
 

Pin # TiniPod PlugaPod MinPod IsoPod ServoPod 
1 n/a n/a PA0 PA0 PA0 
2 n/a n/a PA1 PA1 PA1 
3 n/a n/a PA2 PA2 PA2 
4 n/a n/a PA3 PA3 PA3 
5 n/a n/a PA4 PA4 PA4 
6 n/a n/a PA5 PA5 PA5 
7 n/a n/a PA6 PA6 PA6 
8 n/a n/a PA7 PA7 PA7 
9 ISA0/PWMA0 ISA0/PWMA0 PE3 PB0 PB0 
10 ISA1/PWMA1 ISA1/PWMA1 PE4 PB1 PB1 
11 ISA2/PWMA2 ISA2/PWMA2 PE5 PB2 PB2 
12 FAULTA0/ 

PWMA3 
FAULTA0/ 
PWMA3 

PE6 PB3 PB3 

13 FAULTA1/ 
PWMA4 

FAULTA1/ 
PWMA4 

PE7 PB4 PB4 

14 FAULTA2/ 
PWMA5 

FAULTA2/ 
PWMA5 

TA0/PHASEA0 PB5 PB5 

15 TD1 TD1 TA1/PHASEB0 PB6 PB6 
16 TD2 TD2 TA2/INDEX0 PB7 PB7 
17 TA0 TA0 TA3/HOME0 PE2 PE2 
18 TA1 TA1 TD1 PE3 PE3 
19 TA2 TA2 TD2 PE4 PE4 
20 TA3 TA3 PWMA0 PE5 PE5 
21 PE4 PE4 PWMA1 PE6 PE6 
22 PE5 PE5 PWMA2 PE7 PE7 
23 PE6 PE6 PWMA3 TA0/PHASEA0 TA0/PHASEA0 
24 PE7 PE7 PWMA4 TA1/PHASEB0 TA1/PHASEB0 
25  n/a PWMA5 TA2/INDEX0 TA2/INDEX0 
26  n/a FAULTA0 TA3/HOME0 TA3/HOME0 
27  n/a FAULTA1 TB0/PHASEA1 TB0/PHASEA1 
28  n/a FAULTA2 TB1/PHASEB1 TB1/PHASEB1 
29  n/a FAULTA3 TB2/INDEX1 TB2/INDEX1 
30  n/a ISA0 TB3/HOME1 TB3/HOME1 
31  n/a ISA1 TC0 TC0 
32  n/a ISA2 TC1 TC1 
33  ADC1 ADC0 TD0 TD0 
34  ADC0 ADC1 TD1 TD1 
35  ADC3 ADC2 TD2 TD2 
36  ADC2 ADC3 TD3 TD3 
37  ADC5 ADC4 PWMA0 PWMA0 
38  ADC4 ADC5 PWMA1 PWMA1 
39  ADC7 ADC6 PWMA2 PWMA2 
40  ADC6 ADC7 PWMA3 PWMA3 
41  PA1  PWMA4 PWMA4 
42  PA0  PWMA5 PWMA5 
43  PA3  PWMB0 PWMB0 
44  PA2  PWMB1 PWMB1 
45  PA5  PWMB2 PWMB2 
46  PA4  PWMB3 PWMB3 



Pin # TiniPod PlugaPod MinPod IsoPod ServoPod 
47  PA7  PWMB4 PWMB4 
48  PA6  PWMB5 PWMB5 
49    FAULTA0 FAULTA0 
50    FAULTA1 FAULTA1 
51    FAULTA2 FAULTA2 
52    FAULTA3 FAULTA3 
53    FAULTB0 FAULTB0 
54    FAULTB1 FAULTB1 
55    FAULTB2 FAULTB2 
56    FAULTB3 FAULTB3 
57    ISA0 ISA0 
58    ISA1 ISA1 
59    ISA2 ISA2 
60    ISB0 ISB0 
61    ISB1 ISB1 
62    ISB2 ISB2 
63    ADC0 ADC0 
64    ADC1 ADC1 
65    ADC2 ADC2 
66    ADC3 ADC3 
67    ADC4 ADC4 
68    ADC5 ADC5 
69    ADC6 ADC6 
70    ADC7 ADC7 
71     ADC8 
72     ADC9 
73     ADC10 
74     ADC11 
75     ADC12 
76     ADC13 
77     ADC14 
78     ADC15 

 
For the TiniPod, the pin numbers correspond to the numbering of the J1 connector. 

For the PlugaPod, the first 24 pin numbers correspond to the numbering of the J1 
connector.  The next 24 pin numbers correspond to the numbering of the J5 connector 
(offset by 24). 

For the MinPod, IsoPod, and ServoPod, since they each have several I/O connectors, 
the pin numbering does not correspond directly to any of them.  Instead, the pin 
numbering is “functional,” as shown in the table above. 

2.6.2. Supported I/O Functions 
Only a limited set of functions can be used with PIN.   

If you use a function which is not supported on a given pin – such as trying to do output 
on an input-only pin, or ANALOGIN on a digital pin – the ‘Pod™ will take what it 
considers the most reasonable action.  This action will always have the expected stack 



effect (i.e., it will take something from the stack, or put something on the stack).  The 
‘Pod™ will also do this if you specify an invalid pin number. 

The supported functions are: 

ON, OFF, TOGGLE   …on pins capable of digital output, these will have the expected 
result. On pins which are “input-only” pins (FAULTxx, ISxx, ADCx), these will 
do nothing. 

SET   …on pins capable of digital output, this will have the expected result.  On pins 
which are “input-only,” this will simply discard the input argument. 

ON?, OFF?   …on pins capable of digital input, these will have the expected result.  On 
the analog input pins (ADCx), both ON? and OFF? will always return zero. 

 The “output-only” pins (PWMxx) are a special case.  On the MinPod, IsoPod, and 
ServoPod, these will return the value last output to the pin (i.e., they will perform 
the functions of ?ON and ?OFF).  

On the TiniPod and PlugaPod, each of these output pins is paired with an input 
pin, so each pin does have an input function.  Thus, on the TiniPod,  

9 PIN ON     is equivalent to  PWMA0 ON but 
9 PIN ON?     is equivalent to  ISA0 ON?  

 
 Note that if you have used such a pin for output, the output will remain enabled, 

and so ON? and OFF? will return the current output state. 

ANALOGIN   …on analog input pins, this will have the expected result.  On pins 
capable of digital input, this will return $FFFF if the input is high, or 0 if the input 
is low; i.e., the same function as ON?.  On “output-only” pins, this will act the 
same as ON? (see above). 

PWM-PERIOD, PWM-OUT   …on pins capable of PWM output (PWMxx and Txx), 
these will have the expected result.  On all other pins, these will simply discard 
the input parameters. 

For all other I/O operations, you must refer to pins by name.  In particular, the serial I/O 
operations (TX, RX, etc.) cannot be used with PIN.  You must name the SCI port or 
GPIO pin that you wish to use. 

2.6.3. Examples 
This word, on the IsoPod™, will print the current values of all eight analog inputs: 

DECIMAL 63 CONSTANT FIRST-ADC 
        71 CONSTANT LAST-ADC+1 



: .ANALOGS 
    LAST-ADC+1 FIRST-ADC DO   I PIN ANALOGIN .  LOOP  
; 
 
This word, on the MinPod, will return true if any of the timer inputs is high. 

DECIMAL 14 CONSTANT FIRST-TIMER 
        20 CONSTANT LAST-TIMER+1 
: ANY-HIGH? ( -- f ) 
    0  LAST-TIMER+1 FIRST-TIMER DO   I PIN ON? OR  LOOP  
; 
 
This word, on the PlugaPod, will set the duty cycle of the six PWM outputs to match the 
analog values read on the first six analog inputs.  (It assumes that PWM-PERIOD has 
already been set.)  This would allow six potentiometers, connected to ADC0-5, to control 
the speed of six motors, connected to PWMA0-5. 

DECIMAL 9 CONSTANT FIRST-PWM 
        15 CONSTANT LAST-PWM+1 
        33 CONSTANT FIRST-ADC 
FIRST-ADC FIRST-PWM - CONSTANT ADC-OFFSET 
: ADC-TO-PWM 
    LAST-PWM+1 FIRST-PWM DO   
        I ADC-OFFSET + PIN ANALOGIN  I PIN PWM-OUT   
    LOOP 
; 
 

2.7. Using Trinaries for I/O 
The input and output “methods” that have been described in this chapter are intended to 
be easy to use, and to get you up and running quickly.  So, most of them will perform any 
port initialization that is required, even if the port has already been initialized.    Trinaries 
are defined in section 4.9. 


	I/O PROGRAMMING
	Bit Output
	Bit Input
	Byte Input and Output
	Serial Communications Interface (SCI)
	Setting the Baud Rate
	Polling the SCI Status
	Serial Receive Buffering
	Serial Transmit Buffering
	Terminal I/O
	A Serial I/O IsoMax Example

	Serial Peripheral Interface
	Setting the SPI Parameters
	Serial Receive Buffering (version 0.6)
	Serial Transmit Buffering (version 0.6)
	An SPI Master-Slave Example
	
	
	PE6/MISO ( PE6/MISO




	PWM Output
	Half Speed Operation
	Output Polarity
	Complimentary PWM Output

	PWM Input
	Input Polarity
	Example

	Analog-to-Digital Conversion
	Quadrature (Position) Decoders
	MinPod Encoder Inputs
	Index and Home

	“Software UART” Serial I/O
	Setting the Baud Rate
	Sending and Receiving Serial Data
	Polling the Serial Status
	Serial Buffering
	Stopping and Starting the Serial Engine

	Indexed Pin I/O (Pin Numbering)
	Pin Numbering
	Supported I/O Functions
	Examples

	Using Trinaries for I/O


