1. /0 PROGRAMMING

OK, so now you know how to make and run state machines using IsoMax. Your state
machines need to do something! This is where the rich assortment of inputs and outputs
on the ‘Pod™ comes into play. You can use turn pins on and off, check logic levels, send
pulse streams, measure time, read analog voltages, send and receive serial data, and
control SPI (Serial Peripheral Interface) chips.

All of the input/output functions of the ‘Pod™ follow a simple pattern: you specify the
‘Pod™ pin, and then the action you want to perform. If you’ve encountered object-
oriented programming before, this will be familiar to you. You specify an object (an 1/0
pin), and then you perform a method (an input or output action).

Syntax note: an object and method are always a pair. Normally, they must appear
together in your program. We’ll explore some ways later to get around this limitation,
but for now, remember that you must always specify both.

1.1. Bit Output

You’ve already seen examples of the simplest kind of I/O: turning an output pin on or
off. We used this in Section 4 to turn LEDs on and off. The basic commands are

pin ON
pi n OFF

where “pin” can be any one of the following:

REDLED GRNLED YELLED

PAO PA1 PA2 PA3 PA4 PAS5 PA6 PA7

PBO PB1 PB2 PB3 PB4 PB5 PB6 PB7

PDO PD1 PD2 PD3 PD4 PD5

PEO PE1 PE2 PE3 PE4 PE5 PE6 PE7
TAO TA1 TA2 TA3

TBO TB1 TB2 TB3

TCO TC1

TDO TD1 TD2 TD3

PWAO PWAL PWA2 PWA3 PWWA4 PWAS
PWWB0 PWB1 PWB2 PWB3 PWB4 PWBS

That’s a lot of outputs! But don’t look for TA0-3 and TB0-3 on the connectors. These
are dual-function pins, and on the connector are labeled differently:

TAO0O = PHASEAO TBO = PHASEAl
TAl = PHASEBO TB1 = PHASEB1
TA2 = | NDEXO TB2 = | NDEX1
TA3 = HOVEO TB3 = HOVE1l

Also, on the V2 IsoPod, PDO, PD1, PD2 are the same as REDLED, YELLED, GRNLED
(these are the pins that control the LEDs). Pins PEQ, PE1, PD6, PD7 are reserved for the
SCI channels, and not available for simple I/0O. There are no pins TC2 and TC3.

So, you can turn the red LED on with
REDLED ON
and turn it off with

REDLED OFF

What if you want to set an output on or off, depending on the value of a variable? You
could write an IF..ELSE..THEN using ON and OFF. But a simpler solution is:

n pin SET Sets the output of the pin according to “n”. If n is zero,
turns the pin off. If n is nonzero, turns the pin on. (Zero
and nonzero correspond to logical false and true.)

So,

1 REDLED SET will turn the LED on,
0 REDLED SET will turn the LED off, and
33 REDLED SET (or any nonzero number) will turn the LED back on.

Perhaps you want to flip the state of the pin, but you don’t know whether it was
previously turned on or off:

pin TOGGLE will change the state of the pin. If it was on, this turns it
off. If it was off, this turns it on.

If you need to know whether a pin has been previously turned on or off, you can ask
with:

pin 20N returns true if the pin has been turned on.
pin ?0FF returns true if the pin has been turned off.

We know, these are redundant, since ?OFF is the logical inverse of 20N. We give you
both of them so you can use whatever makes your program most readable.

1.2. Bit Input

Many of the programmable output pins can be used instead as logic input pins:

PAO PA1 PA2 PA3 PA4 PAS5 PA6 PA7
PBO PB1 PB2 PB3 PB4 PB5 PB6 PB7
PDO PD1 PD2 PD3 PD4 PD5

PEO PE1 PE2 PE3 PE4 PE5 PE6 PE7

TAO TA1 TA2 TA3
TBO TB1 TB2 TB3
TCO TC1

TDO TD1 TD2 TD3

Obviously the LEDs can’t be used as digital inputs. And the PWM pins on the ‘Pod™
are permanently configured as output pins. The rest of the Pxx and Txx pins can be
used as inputs or outputs, under program control.

There are 14 new pins that can only be used as digital inputs:

| SAO | SA1 | SA2
FAULTAO FAULTA1 FAULTA2 FAULTAS
| SBO | SB1 | SB2
FAULTBO FAULTB1 FAULTB2 FAULTB3

To read a digital input pin, you can use the commands

pin ON? returns true if the pin is at a logic high.
pin OFF? returns true if the pin is at a logic low.

Again, these are just two different ways of looking at the same input. Use whatever
makes your program more readable.

Note that these are not the same as the ?ON and ?OFF functions shown above. There
are two important differences:

a) ?ON ?OFF return the last value that was written to the pin. If the pin has been
configured as an input, or as an open-collector output, this may not be the actual
logic level! ON? OFF? return the actual logic level on the pin.

b) ON? OFF? will change the pin from an output to an input. 20N ?OFF will not
change the pin’s configuration; if it was an output, it remains an output.

The rule is this: use 20N ?0FF for output pins. Use ON? OFF? for input pins.

We haven’t talked about how to configure a pin as a digital output or a digital input.
That’s because you don’t have to — it’s automatic. If you use one of the output words like
ON or TOGGLE, IsoMax will automatically configure that pin as an output (if it hadn’t
already done so). Likewise, if you use ON? or OFF?, [soMax will automatically
configure that pin as an input. (You can even switch a pin from output to input, or input
to output, in your program...but that’s an unusual application.)

1.3. Byte Input and Output

Port A and port B on the [soPod™ , ServoPod™ are 8-bit parallel I/O ports that are
entirely available for you to use. You can use the individual pins of these ports for
single-bit input and output, as we’ve just described. (The pin names are PAO-PA7 for

port A, and PBO-PB7 for port B.) Or, you can use either or both of these ports as 8-bit
parallel ports.

To tell IsoMax that you want to treat all 8 pins as a single byte, you use the port names:

PORTA PORTB

On port A, PAO is the least-significant bit, and PA7 is the most-significant bit. Likewise
for port B.

There are only two actions that you can perform on an 8-bit parallel port:

port GETBYTE reads the 8-bit value from the (input) port
port PUTBYTE writes an 8-bit value to the (output) port

Again, the configuration is automatic. When you use GETBYTE, a// of the pins of the
port are configured as inputs. When you use PUTBYTE, all eight pins are configured as
outputs.

To turn all of the port A bits off, except PA7 which is turned on, you could use:
HEX 80 PORTA PUTBYTE

To test whether any of the low 4 bits of port B are on, you could use
PORTB GETBYTE HEX OF AND

which will return a nonzero value if any of the bits PBO-PB3 are high. Here’s a trivial
example of a program that makes the IsoPod™, ServoPod™ into an eight-bit inverter:

PORTA GETBYTE INVERT PORTB PUTBYTE

In this example, a byte is read from port A. It is then logically inverted, and written to
port B. (Of course, this will only happen once. To respond to changes in the port A
inputs, this bit of code would have to be written in a loop, or into an IsoMax state
machine, so that it is called repeatedly.)

1.4. Serial Communications Interface (SCI)
The ‘Pod™ includes two full-duplex asynchronous serial ports. These are named

SCIO SCI1

Note that you do not refer to the serial ports by their pin names, but by their port names.
SCIO0 is the RS-232 port that is connected to your PC for software development (pins
SOUT and SIN on connector J1). SCI1 is the RS-232/RS-422 port, pins SOUT1 and
SINT on connector J4 (on the V1 IsoPod™, only RS-422 is available for this port).

The basic operations on the serial port are TX and RX:

port TX transmit one byte on the serial output
port RX receive one byte on the serial input

For example, to send the character “A” (hex 41) to the terminal (connected to the primary
RS-232 port), you could use the command

HEX 41 SCIO0 TX
To receive a character from the RS-422 port, and display its hex value, you could use

SCI1 RX HEX

But before you use SCI1, you must set its baud rate...

1.4.1. Setting the Baud Rate

When the ‘Pod™ is reset, it sets the SCIO port to operate at 115,200 baud (or 9600 baud
for V0.7 or earlier). You can change this to some other value, say 38400, with the
command

DECIMAL 38400 SCIO BAUD

(Baud rates are normally written as decimal numbers.) The moment you execute this
command, the baud rate will take effect, so you won’t see the usual “OK” response.
You’ll have to change the baud rate of MaxTerm or HyperTerminal (or whatever you are
using) to the new rate. Then you can press Enter and see the response at the new rate.

Before you use the SCI1 port, you must set its baud rate. For example,
DECIMAL 9600 SCI1 BAUD

For the baud rate, you can specify any value between 300 and 57600. The “standard”
baud rates 300, 600, 1200, 2400, 4800, 9600, 19200, and 38400 will be accurately set.
For other values, the ‘Pod™ will give the best approximation that it can, within the limits
of its baud rate generator.

(The baud rate is produced by dividing 2.5 MHz by an integer. Thus 9600 baud is
produced by dividing 2.5 MHz by 260, which gives an actual rate of 9615.4 baud, close
enough for serial communications. But the closest we can come to 57600 baud is
dividing by 43 to get 58140 baud.)

1.4.2. Polling the SCI Status

RX will wait for a character to be received, unless there’s already one waiting in the serial
data register. This may lead to “Program Counter Capture,” where the processor sits in a

loop waiting forever for an external event. You want to avoid this when you write
IsoMax programs!

The solution is to poll the SCI receiver. You do this with

port RX? check to see if a receive character is available

RX? will never wait. It will instantly return a true (non-zero) value if a character is
available, or a zero value if no character is waiting in the receiver. It does not fetch the
character from the receiver. If RX? returns true, you must follow it with RX to get the
character.

We’ll see an example of how to use this soon.

TX might also wait, if a previous character hadn’t finished transmitting. But at least this
wait won’t be indefinite: you know that the transmitter will send the character in a short
time, and so you’ll have to wait at most one character period. But this might also be a
problem in IsoMax code, so you can check to see if the transmitter can accept a character
with

port TX? check to see if transmitter is ready for a character

TX? will instantly return a true (non-zero) value if the transmitter can accept a character
now. It will return a zero value if the transmitter is busy, that is, if the transmitter is still
sending the last character and can’t accept a new one yet.

1.4.3. Serial Receive Buffering

What happens if receive characters arrive faster than you’re checking for them? With
most serial ports, if a second character arrives before you’ve read the first one, you get an
overrun condition and one of the two characters is lost. This is a problem!

Fortunately, the ‘Pod™ has a built-in solution for this problem. If you wish, you can
define a receive buffer which will hold characters until you’re ready to process them.
This buffer can be as big as you like (limited of course by the amount of available RAM).

To activate receive buffering, you must first reserve some RAM for the buffer. An easy
way to do this is to define an IsoMax variable, and then immediately allocate some extra
RAM for it. To reserve a buffer of 20 (decimal) characters, you could type

DECIMAL HERE 20 ALLOT CONSTANT BUFFER1

You should be aware that this buffer will actually hold only 16 serial characters. The
reason is that 4 characters’ worth of storage will be used for control information. So,
when you are sizing your buffer, remember to add 4 for this “overhead.” IsoMax won’t
let you use a buffer size smaller than 5.

Next you tell the ‘Pod™ where that buffer is located, how big it is, and what port to use it
for.

BUFFER1 20 SCI1 RXBUFFER

This says that BUFFER1, with a length of 20, is to be used as the receive buffer for port
SCI1. (Note that you use the real buffer length, 20, and not 16.)

That’s all there is to it! The buffer is now active and will begin storing received
characters. None of your other serial code has to change: RX? will tell you if there’s a
character waiting in the buffer, and RX will fetch the next character from the buffer.

Specifying any address with a length of zero will disable the receive buffer and return to
“unbuffered” operation. For this, you can even use an address of zero, e.g.,

0 0 SCI1 RXBUFFER

Returning to unbuffered operation will switch off the SCI receiver interrupt.

1.4.4. Serial Transmit Buffering

Transmitted characters will never get lost (at least not by the ‘Pod™), because the ‘Pod™
will always wait until it can send a character. But in a Virtually Parallel application, that
wait might prevent other tasks from being accomplished. For example, if a particular
state in a state machine needs to send a 16-character message at 9600 baud, that can add a
16.7 millisecond delay — very noticeable when IsoMax is running state machines every

10 milliseconds!

Again, there is a built-in solution. You you can define a transmit buffer which will hold a
block of characters and then dole them out automatically to the SCI transmitter. Again,
your buffer size is limited only by RAM.

Transmit buffering is activated the same as receive buffering. First reserve some RAM
for the buffer. Of course, we can’t use the same buffer at the same time for transmitting
and receiving, so we’ll define a new buffer for transmitting:

DECIMAL HERE 20 ALLOT CONSTANT BUFFER2

Next tell the ‘Pod™ where that buffer is located, how big it is, and what port to use it for.

BUFFER2 20 SCI1 TXBUFFER

This is just like the previous example except that we’re using BUFFER2, and we’re using
it as a TXBUFFER (transmit buffer).

That’s it! The buffer is now active and will store characters that you transmit. None of
your other serial code has to change: TX? will tell you if there’s room in the buffer, and
TX will transmit a character via the buffer.

As before, specifying any address with a length of zero will disable the transmit buffer
and return to “unbuffered” operation. For example,

0 0 SCI1 TXBUFFER

Returning to unbuffered operation will switch off the SCI transmitter interrupt.

1.4.5. Terminal I/O

IsoMax uses serial port SCIO for its to connect to a serial terminal (or a terminal program
such as MaxTerm or HyperTerminal). The “customary” terminal input and output
operations still work in IsoMax, as follows:

KEY performs the same function as SCI0 RX

EMIT performs the same function as SCI0 TX
?TERMINAL performs the same function as SCI0 RX?
?KEY performs the same function as SCI0 RX?

(?TERMINAL and ?KEY are equivalent. ?TERMINAL is the older name for this
function, and is retained for backward compatibility.) You can freely intermix KEY and
SCIO0 RX,or EMIT and SCI0O TX, with no confusion.

This also means that you can change the baud rate of the terminal with SCI0 BAUD.
And, if you specify a receive buffer with SCI0 RXBUFFER, that also will be used for
terminal input. This is especially useful when downloading files to the ‘Pod™.

1.4.6. A Serial I/O IsoMax Example

Here’s how you might use RX? in a state machine. This machine will listen on serial port
SCI1. When it sees an ASCII “1” character (hex 31), it will turn on the red LED. An
ASCII “0” (hex 30) will turn off the red LED. All other characters are ignored.

At first you might be tempted to write the state machine this way:

HEX
MACHINE WATCHSCI1
ON-MACHINE WATCHSCI1
APPEND-STATE WAITCHAR
APPEND-STATE TESTCHAR

IN-STATE WAITCHAR CONDITION SCI1 RX? CAUSES (no action) THEN-STATE
TESTCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION SCI1 RX 30 = CAUSES REDLED OFF THEN-STATE
WAITCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION SCI1 RX 31 = CAUSES REDLED ON THEN-STATE
WAITCHAR TO-HAPPEN

WAITCHAR SET-STATE INSTALL WATCHSCI1

The first state, WATTCHAR, is fine. The machine will stay in this state until a character is
received. But TESTCHAR won’t work, because it tries to read the SCI1 port twice. (Once
for each condition.) The first time it will get the character, but the second time it will try

to read another character...and of course, there isn’t a second character.

To solve this we need to use an auxiliary variable to hold the character. Then we can
read it only once, and test it several times.

VARIABLE CMDCHAR
HEX
MACHINE WATCHSCI1
ON-MACHINE WATCHSCI1
APPEND-STATE WAITCHAR
APPEND-STATE TESTCHAR

IN-STATE WAITCHAR CONDITION SCI1 RX? CAUSES SCI1l RX CMDCHAR C! THEN-STATE
TESTCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 30 = CAUSES REDLED OFF THEN-STATE
WAITCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 31 = CAUSES REDLED ON THEN-STATE
WAITCHAR TO-HAPPEN

WAITCHAR SET-STATE INSTALL WATCHSCI1

There’s one more possible problem with this machine. What if we get a character that’s
neither 30 nor 31?7 We’ll see the character, and make the transition to TESTCHAR state.
But since no condition is satisfied, we never leave TESTCHAR state! Thus we never
return to WAITCHAR state and we never accept another character. This is a flaw in the
design of our state machine; fortunately, it’s easily fixed by adding another transition:

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 30 < CMDCHAR C@ 31 > OR CAUSES
(no action) THEN-STATE WAITCHAR TO-HAPPEN

Now, if the character is neither 30 nor 31, the machine will perform no output, but it will
return to wait for another character.

1.5. Serial Peripheral Interface

The ‘Pod™ includes a Serial Peripheral Interface (SPI) for communication with
peripheral chips and other microprocessors. For consistency with other usage, and to
make provision for future expansion, the port is named

SPIO

The basic operations on the SPI port are TX-SPT and RX-SPI, TX-SPI? and RX~
SPI?:

port TX-SPI transmit one word on the SPI output

port RX-SPI receive one word on the SPI input

port TX-SPI? check to see if transmitter is ready for a word
port RX-SPI? check to see if a received word is available

However, an SPI port does not work like a normal serial port. In the SPI port, the
transmitter and receiver are linked. Whenever you transmit a word, you receive a word.
Also, the behavior of the port depends on whether you are operating as an SPI Master or
an SPI Slave:

Master — You start an SPI transaction by writing a word to the SPI transmitter (with
TX-SPI). Every time you do this, a word will be loaded into the receive register.
So, after every TX-SP1I, you should do an RX-SPT to read this received word and
make the register ready for a new word. (The receive register is loaded even if the
slave device doesn’t output a reply.)

Slave — You wait for data to be sent you to by the SPI Master. When this happens,
RX-SPI? will return true, and you can get the word with RX-SPI. Any data that
you want to send to the Master must be preloaded into the transmit register with TX-
SPI, because it will be sent as you are receiving the word from the Master. Every
time you receive a word, the transmitter will be emptied. If you don’t load a new
word into the transmitter, it will keep sending the last word you loaded.

More differences are that the word size can range from 2 to 16 bits, and can be sent LSB-
first or MSB-first.

1.5.1. Setting the SPI Parameters

The Master and Slaves must agree on the SPI data format and rate. These options are
controlled by the following commands:

n port MBAUD Sets the baud rate to “n” Mbaud, wherenis 1, 2, 5,
or 20. (The actual rates are 1.25, 2.5, 5, or 20
Mbaud, but the MBAUD command expects an integer
value.) The baud rate only needs to be set on the
Master; this will automatically control the Slaves.

n port BITS Specifies the number of bits “n” to be sent by TX-
SPT and read by RX-SPI. n may be 2 to 16.

port MSB-FIRST Specifies that words are to be sent and received
most-significant-bit first.

port LSB-FIRST Specifies that words are to be sent and received

least-significant-bit first.

Master and Slaves must also agree on clock phase and clock polarity. In the DSP5S6F80x
processors these are controlled by the CPHA and CPOL bits in the SPI Control Register.
In IsoMax they are controlled with these commands:

port LEADING-EDGE Receive data is captured by master & slave on the
first (leading) edge of the clock pulse. (CPHA=0)

port TRAILING-EDGE Receive data is captured by master & slave on the
second (trailing) edge of the clock pulse.

(CPHA=1)

port ACTIVE-HIGH Leading and Trailing edge refer to an active-high
pulse. (CPOL=0).

port ACTIVE-LOW Leading and Trailing edge refer to an active-low

pulse. (CPOL=1).

Once the communication parameters have been set, the SPI port should be enabled as
either a Master or a Slave:

port MASTER Enables the port as an SPI Master. MOSI is output,
MISO is input, and SS has no assigned function.
(The SS pin may be used as GPIO output bit PE7.)

port SLAVE Enables the port as an SPI Slave. MOSI is input,
MISO is output, and SS is the Slave Select input.
SS must be low for the SPI port to receive and
transmit data.

Remember that the SPI port is not activated until you use MASTER or SLAVE.

1.5.2. Serial Receive Buffering (version 0.6)

Like the SCI ports, the SPI port may use a receive buffer. The format and requirements
are exactly the same as for the SCI port: the buffer must be at least 5 cells long, and is
installed with the command

address length port RXBUFFER

This is particularly valuable on SPI Slaves, since data can be sent to them at any time
from the Master. If you don’t have a receive buffer on the Slave, you’d have to check the
receiver constantly for new data...because if the transmitter sent two words before you
checked, you’d lose one. But even at 20 Mbaud, the buffered receiver won’t lose data —
unless of course you overflow the buffer! (The receive buffer uses interrupts, which
means that the instant a full word has been received, the processor can store it in the
buffer.)

Buffering is less important on an SPI Master, because the Master always has complete
control over when data will be received. Data is received when data is sent! But if
you’re using a transmit buffer to send a block of SPI data without waiting, you should

have a receive buffer at least as big, since every word send will cause a word to be
received.

When the receive buffer is active, RX—SPI and RX-SPI? work exactly as before.

Specifying any address with a length of zero will disable the receive buffer and return to
“unbuffered” operation. For this, you can even use an address of zero, e.g.,

0 0 SPIO RXBUFFER

Returning to unbuffered operation will switch off the SPI receiver interrupt.

1.5.3. Serial Transmit Buffering (version 0.6)

The SPI port may also use a transmit buffer. Again, the buffer must be at least 5 cells
long, and is installed with the command

address length port TXBUFFER

This is valuable for Slaves, because the Slave doesn’t know when the Master will ask for
a word of data. (When the Master sends a word, it expects the Slave to return one.)
When the transmit buffer is active in a Slave, the first word sent will be preloaded into
the SPI transmitter. Additional words will be held in the transmit buffer. Each time the
Master transfers a word over the SPI port, the Slave’s transmitter will be automatically
loaded with the next word to be sent.

You should be aware that some SPI applications can’t benefit from preloaded data in the
buffer. Sometimes, the slave must receive a command word from the Master, and then
generate a reply based on that command. In this case, we don’t know what to load into
the transmitter until the received word has been processed, so we can’t “preload” a reply
into the transmit buffer.

Many SPI applications involve this kind of exchange, so often there is no advantage to
transmit buffering on the Master. The Master always has complete control over the data
flow, so there’s no danger of its transmitter running out of data. But if you are using the
SPI transmitter to send a block of data, and you don’t want stop other Virtually Parallel
processing, you could load the entire block into a transmit buffer.

As before, specifying any address with a length of zero will disable the transmit buffer
and return to “unbuffered” operation. For example,

0 0 SPIO TXBUFFER

Returning to unbuffered operation will switch off the SCI transmitter interrupt.

1.5.4. An SPI Master-Slave Example

Here’s a simple procedural program that configures an ‘Pod™ as an SPI Slave device. It

awaits a 16-bit value on the SPI port. When it receives a 16-bit value, it treats that value

as an address, fetches that location in Program memory, and then returns that 16-bit value
the next time the Slave receives a word.

DECIMAL
VARIABLE TBUF 16 ALLOT
VARIABLE RBUF 16 ALLOT

: SLAVE-MAIN
16 SPIO BITS SPIO MSB-FIRST SPIO TRAILING-EDGE
SPI0O ACTIVE-LOW SPIO SLAVE
TBUF 16 SPIO TXBUFFER
RBUF 16 SPI0O RXBUFFER

\ simple SPI slave P-memory dump
\ 0000 = null command, discarded, no reply
\ nnnn = address. On next xmit, send memory contents.
BEGIN ?KEY 0= WHILE
SPI0 RX-SPI? IF
SPI0 RX-SPI ?DUP IF
P@ SPIO TX-SPI
THEN
THEN
REPEAT ;

The outer loop of the program checks for a keypress on the RS-232 terminal input. If a
key is detected, the slave program terminates. Otherwise, it checks to see if a word has
been received on the SPI port with SPTO RX-SPI? Ifaword has arrived, it is obtained
with RX-SPI. Ifitis nonzero (tested with ?DUP), it is used as the address for P@ (fetch
from Program memory), and the resulting data is sent to the transmitter with TX-SPT.
The loop then continues.

Observe that we don’t send anything in response to a 0000 command code. This
primitive SPI protocol depends on the Master and Slave staying in perfect
synchronization. Every word received generates one word of reply; and that reply word
will be expected on the next transmission from the Master. Should the Slave ever get
“ahead” or “behind” the Master — say, by losing a word -- it will stay ahead or behind,
indefinitely. All but the very simplest SPI protocols must be designed to handle this
problem, and recover automatically. In this example, the Master can send 0000 codes to
read out the Slave’s transmit buffer without refilling it with new data. (A more
sophisticated protocol might require a very specific message format with “command” and
“data” bytes, checksums, and so forth.)

Here’s the companion program which runs on a second ‘Pod™ as an SPI Master.

SEND (x -- x')
PE7 OFF SPIO TX-SPI SPIO RX-SPI PE7 ON ;

DECIMAL

: SLAVEQ (a -- n)
SEND DROP (send address, discard reply)
250 0 DO LOOP (give slave time to respond)
0 SEND (send null to fetch gueued value)

: RDUMP (a n --)

16 SPI0O BITS SPIO MSB-FIRST SPIO TRAILING-EDGE
SPIO ACTIVE-LOW 1 SPIO MBAUD SPIO MASTER
\ Remote slave P-memory dump
OVER + SWAP DO

CR I 5 U.R 2 SPACES

I 8+ I DO

I SLAVE@ 5 U.R

LOOP

8 +LOOP

Il

The key word in this program is SEND. Given a value on the stack, SEND will pull the
Slave Select line low (active), transmit the value over the SPI port, receive the value
which is returned from the slave, and then pull the Slave Select line high (inactive). This
assumes that the SPI ports of the Master and Slave ‘Pods are connected directly together,
as follows:

Slave Master
GND <« GND
PE4/SCLK <« PE4/SCLK
PE5/MOSI <> PE5/MOSI
2. PE6/MISO <> PE6/MISO
PE7/SS <> PE7/SS

Note that on the Slave, the PE7 pin is used as SS (Slave Select), and must be pulled low
before the Slave will accept or send SPI data. But on the Master, PE7 is just a general-
purpose output pin. What we’re really doing is connecting the Slave’s SS input to the
Master’s PE7 output....they just happen to use the same pin on the I/O connector.

Remember also that every time the Master sends a word over the SPI, it will receive a
word back. This is handled by SEND which waits for the received word (with RX-SPT)
after every transmission. This performs another subtle but important function: you can’t
pull Slave Select high until the SPI transmission is finished. TX-SPI won’t wait for the
16 bits to be transmitted; it will return as soon as they’re loaded into the transmit buffer.
It will take over 12 microseconds (at 1.25 Mbaud) to send those bits! But RX-SPT won’t
have a result until 16 bits have been sent, and 16 bits received in reply. So waiting for
RX-SPT ensures that the transmission is complete. For this application, it’s best that the
Master not use transmit and receive buffers.

SEND or something like it will probably be a key word in any SPI Master application.
With it, we can construct SLAVEQ (“slave fetch”). Given an address on the stack,

SLAVE@ sends that to the Slave, and discards whatever the slave sends back (the reply is
meaningless, since the Slave doesn’t have an address yet). Then the Master must wait for
a short delay, because the Slave has to have time to see that it has received a command,
process the command, and put the reply in its transmit buffer. Finally the Master sends a
0000 command code. The very action of sending this 0000 value will cause the data in
the Slave’s transmit buffer to be sent back to the Master. This is the reply we desire from
the slave, so SLAVEQR returns with this on the stack.

RDUMP (“remote dump”) is a command very much like DUMP, but it uses SLAVE@ to
dump memory from the Slave via the SPI port. Given an address ‘a’ and length ‘n’, the
outer DO loop steps through the addresses 8 at a time. The inner DO loop steps through
each block of 8 addresses one at a time, fetches the data from the Slave, and prints that
data.

Incidentally, note that we set the baud rate on the Master, but not on the Slave. The

Slave always follows the Master’s baud rate. But MSB-FIRST, TRAILING-EDGE,
and ACTIVE-LOW must be set independently on Master and Slave (and they must

match).

This program can be modified to return any kind of data from the Slave. For example,
the Master could send an ADC channel number, and the Slave could read that channel
and send the result.

2.1. PWM Output

The IsoPod™ and ServoPod™ can generate pulse-width-modulated (PWM) square waves
on 26 different output pins. These pins are

TAO TA1 TAZ2 TA3

TBO TB1 TB2 TB3

TCQO TC1

TDO TD1 TD2 TD3'

PWAO PWAL PWAZ2 PWA3 PWWA4 PWVAS
PWB0 PWB1 PWB2 PWB3 PWWB4 PWBS

You’ve already seen these pins; they can be used as simple digital outputs with the
commands ON and OFF. But these pins also have the ability to generate continuous
PWM signals.

Y ou must specify two parameters for a PWM output: frequency, and duty cycle. These
are done with the commands

n pin PWM-PERIOD
n pin PWM-OUT

! Early versions of IsoMax — before version 0.65 — cannot use pin TD3 for PWM operations. On those
IsoPods, TD3 may be used for bit I/O. Current IsoPods allow all functions on TD3.

PWM-PERIOD controls the frequency of the PWM signal. (Actually, you’re controlling
the period, which is the reciprocal of the frequency.) This expects a value ‘n’ which
represents ticks of a 2.5 MHz clock. You can compute the frequency of the output signal
with the formula

frequency (Hz) = 2,500,000 / N

Thus a value of 2500 would give a frequency of 1 kHz. A value of 25,000 would give a
frequency of 100 Hz. Alternatively, you can compute the period of the PWM signal with
the formula

microseconds = N * 0.4

GOTCHA #1. For the timer output pins, TAO through TD3, you can specify a period up
to 65535 decimal. This gives a frequency of about 38 Hz. But for the PWM output pins,
PWMAO through PWMBS5, you can only specify a period up to 32767 decimal, for a
frequency of 76 Hz. This may be too fast for some PWM devices (such as RC servos).
We’ll see shortly how to get around this limitation.

GOTCHA #2. When you specify the period for one of the PWM output pins, you
change the period for all six pins in that group (PWMA or PWMB). In other words, if
you set PWM-PERIOD for PWMAOQ, you are also setting it for PWMA1 through PWMAS.
This is ordinarily not a problem, but you should be aware of it.

Also, you’re not allowed to set the PWM-PERIOD to a value smaller than 4. In other

words, the maximum PWM frequency is about 625 kHz.> But at that frequency you have
only the coarsest control of duty cycle (in 25% steps). To ensure that you have adequate
PWM resolution when controlling the duty cycle, PWM-PERIOD should be 64 or greater.

PWM-OUT controls the duty cycle of the PWM signal, and activates the PWM output. It
expects a value ‘n’ which is an unsigned integer in the range of 0 to 65535 (0 to FFFF
hex). This corresponds to a duty cycle from 0% to 100%. So,

0 PWMB3 PWM-OUT sets the duty cycle to 0% (always off),
HEX FFFF PWMB3 PWM-OUT sets the duty cycle to 100% (always on),
HEX 8000 PWMB3 PWM-OUT sets the duty cycle to 50% on, and
HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on.

This is independent of the PWM frequency. A PWM-OUT value of HEX 8000 will
always give a 50% duty cycle, regardless of what you’ve specified for PWM-PERIOD.

You can turn off a PWM output by setting its duty cycle to zero, or by using the OFF
command, e.g.,

PWMB3 OFF

2 Versions of IsoMax prior to 0.65 did not allow PWM-PERIOD smaller than 256.

2.1.1. Half Speed Operation

What if you need to control a bunch of RC servos with the PWMA and PWMB output
pins, and they require a PWM frequency of 50 Hz? Normally, these pins can’t produce
anything less than 76 Hz. But there’s one way to produce a slower output, and that is to
slow the entire ‘Pod ™ to half speed.

The command HALFSPEEDCPU turns the ‘Pod’s master clock to half its normal 40 MHz

speed. This slows everything in the ‘Pod™ down to half speed. Instructions will run half
as fast. If you specify 9600 BAUD for the serial port, you’ll actually get 4800 baud.

And what’s most important, if you specify 100 Hz as the PWM output frequency, you’ll
actually get 50 Hz.

To specify 100 Hz PWM frequency, use the command

DECIMAL 25000 pin PWM-PERIOD

If you then type HALFSPEEDCPU you will see an output frequency of 50 Hz. (You can
specify HALFSPEEDCPU before or after PWM-PERIOD, it doesn’t matter. Just
remember that it will also require you to change your terminal’s baud rate.)

If for any reason you need to return to normal “full speed” operation, the command is
FULLSPEEDCPU.

2.1.2. Output Polarity

For the timer output pins TAO through TD3 only, you can control the polarity of the
output signal.

pin ACTIVE-HIGH makes the pin “active high” (the normal case).
Specifying a duty cycle of 25% (hex 4000) will
make the pin on for 25% of the time.

pin ACTIVE-LOW makes the pin “active low.” Specifying a duty cycle
of 25% (hex 4000) will make the pin off for 25% of
the time.

You can’t do ACTIVE-HIGH or ACTIVE-LOW for the PWMxx output pins, but you
don’t need to. To invert the sense of the output, all you need is to do a one’s complement
(INVERT) of the value you’re specifying for PWM-OUT. For example,

HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on, but

HEX 4000 INVERT PWMB3 PWM-OUT sets the duty cycle to 75% on, which is
the same as setting it to 25% off.

So, you might ask, why bother? ACTIVE-HIGH and ACTIVE-LOW are really intended
for PWM input, which will be described in the next section.

2.1.3. Complimentary PWM Output
(Version 0.65 and later)

The PWMAXx and PWMBXx output pins have the ability to operate as complimentary
pairs. This means that while the even-numbered pin is high, the odd-numbered pin is
low, and vice versa.

pin COMPLIMENTARY puts the pin (and its paired pin) in complimentary
mode. This can be used on either pin of the pair,
and it affects both; e.g., you can use either PWMAOQ
COMPLIMENTARY or PWMA1l COMPLIMENTARY
(you don't need to use both, but no harm is done if
you do).

PWM output is controlled by the even numbered PWM channel, e.g., PWMAO in this
example. So to output a complimentary signal on PWMAO and PWMA1, you could write

DECIMAL 25000 PWMAO PWM-PERIOD
PWMAO COMPLIMENTARY
HEX 4000 PWMAO PWM-OUT

This will output a 25% PWM signal on PWMAO and a 75% signal (the complimentary
signal) on PWMA1. You do not need to issue a separate command for PWMA1. To return
the pins to separate operation, use the command:

pin INDEPENDENT puts the pin (and its paired pin) in independent
mode. Again, this can be used on either pin of the
pair, and affects both.

Note that using a PWM pin for programmed digital output, with ON OFF SET or
TOGGLE, will automatically set the pin to independent mode.

Why would you use a pair of pins to produce complimentary PWM signals? Some motor
drive circuits require complimentary PWM signals, and this can save you from having to
add an inverter chip. But the real value of this feature is that it lets you create
nonoverlapping PWM signals: signals which are never both “on” at the same instant.
You do this by specifying a “dead time,” which is the time after one output turns off,
before the other output turns on. (During the deadtime, both outputs are off.)

n pin DEADTIME sets the deadtime register. Like PWM-PERIOD, this
affects all six channels of the PWM group. No

special processing is done; the value (0 to 255) is
just stored in the deadtime register. This only
affects pins in complimentary mode.

A value of 0 given no deadtime, and 255 gives maximum deadtime. The exact amount of
deadtime introduced depends on many factors, including the PWM period, and its
computation is described in detail in the Motorola DSP56801-7 Users’ Manual.

2.2. PWM Input

The IsoPod™ and ServoPod™ can also measure pulse-width-modulated (PWM) square
waves on the 14 timer pins:

TAO TA1 TAZ2 TA3
TBO TB1 TB2 TB3
TGO TC1

TDO TD1L TD2 TD3’

The commands to measure a PWM pulse width are

pin SET-PWM-IN to start measurement, and
pin CHK-PWM-IN to get the result.

SET-PWM-IN makes the specified timer pin an input, and puts it into the pulse-width-
measurement mode. It will do nothing until it sees a rising edge on the input. Then, it
will measure the time that the input is high. The falling edge after a rising edge ends the
time measurement.

CHK-PWM-IN gets the result of the time measurement. If the rising edge has not yet
been seen, or if the “high” width is still being measured (i.e., the falling edge hasn’t been
seen), CHK-PWM-IN will return a value of zero. After a complete pulse has been
received (rising edge, then falling edge), the first use of CHK-PWM-IN will return the
width of that pulse, which will be nonzero.

BEWARE: if you then use CHK-PWM-IN again, without resetting the timer, you will get
an unpredictable nonzero value. Only the first nonzero value returned by CHK-PWM-IN
is valid. After you receive that value, you must reset the timer with SET-PWM-TIN.

The value returned by CHK-PWM-IN is an unsigned integer, representing ticks of a 2.5
MHz clock. This is the same timebase used for PWM output. Each tick of this clock
takes 0.4 microseconds. So, the measured pulse time can be computed with the formula

microseconds = N * 0.4

3 Prior to version 0.65, pin TD3 could not be used for PWM operations. On those IsoPods, TD3 may be
used only for bit I/0.

If you measure a pulse input of 25000 decimal, you know that this is 10 milliseconds.

The PWM measurement has been divided into two actions (“set” and “check”) to avoid
the problem of Program Counter Capture. We don’t want our IsoMax program to sit
waiting for a pulse to be measured -- especially if the pulse never arrives! Instead we
have two commands, SET-PWM-IN and CHK-PWM-IN, which are guaranteed to always
execute immediately. You can test CHK-PWM-IN to cause a state transition when the
pulse has been received.

2.2.1. Input Polarity

SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is hAigh. What if
you need to measure the time that the input pin is low? This is where you need to change
the polarity of the pin:

pin ACTIVE-HIGH makes the pin “active high” (the normal case). The
PWM-IN commands will measure the Aigh duration
of a pulse.

pin ACTIVE-LOW makes the pin “active low.” The PWM-IN

commands will measure the /ow duration of a pulse.

So, actually, SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is
“active.” ACTIVE-HIGH and ACTIVE-LOW define whether “active” is a high level or a
low level.

Incidentally, note that these words aren’t limited to measuring the “active” time (duty
cycle) of a PWM signal. Really they measure pulse width. So they can be used to
measure the width of a single pulse, too.

2.2.2. Example

Here’s a simple procedural program that starts, and waits for, a PWM measurement on
pin TAO:

: MEASURE-PWM (-- n)
TAO SET-PWM-IN
BEGIN TAO CHK-PWM-IN ?DUP UNTIL ;

The key to this program is the phrase ?DUP UNTIL. If TAO CHK-PWM-IN returns a
zero value, UNTIL will see this and continue looping. But when TAO CHK-PWM-IN
returns a nonzero value, ?DUP will make an extra copy, and UNTIL will terminate the
loop. Then the extra copy of this value is left on the stack. This way, CHK-PWM-1IN is
only called once with a nonzero result.

2.3. Analog-to-Digital Conversion

Eight pins on the ‘Pod™ can be used to input analog voltages:
ADCO ADC1 ADC2 ADC3 ADC4 ADCbH ADC6 ADC7

The command to read an analog value (that is, to perform an A/D conversion) is
ANALOGIN.

pin ANALOGIN Reads the given A/D input and returns its value.

ANALOGIN will return a result in the range 0-7FF8 hex, or 0-32760. This is actually a
12-bit A/D result that has been left-shifted 3 places, to use the full range of signed
integers (0 to +32767).

A value of 32760 corresponds to an input of Vref (normally 3.3 volts). 0 corresponds to
an input of 0 volts. So, the actual voltage read on the pin can be computed with the
formula

Vin=3.3 *N/32760

2.4. Quadrature (Position) Decoders
(Version 0.63 and later)

The IsoPod™ and ServoPod™ can read up to seven position encoders, on 14 pins. Each
encoder uses a pair of pins. Two encoders can be connected to dedicated quadrature
decoders:

object name pins used for phase A, B
QUADO PHASEAO, PHASEBO
QUAD1 PHASEA1, PHASEB1

The remaining five position encoders can be connected to pairs of timer inputs. Timers
are always used in pairs, “n” and “n+1”, for this purpose. When you use timer as a
position decoder, your code should always refer to the first timer of the pair:

object name pins used for phase A, B

TA2 TA2, TA3 (I NDEXO, HOVEO)
TB2 TB2, TB3 (I NDEX1, HOWEl)
TGO TGO, TC1

TDO TDO, TD1

TD2 TD2, TD3

Each encoder uses a pair of input pins, called “phase A” and “phase B.” These can be
either quadrature encoded digital inputs (that is, square waves 90° out of phase), or can
be separate “count” and “direction” inputs.

If you use quadrature encoding, phase A is the leading phase for a shaft rotating in the
positive direction, and phase B is the trailing phase. Every edge on either phase A or
phase B will cause a count.

phase A
phase B
count up up up up up up down T down T down T down

down down down

QUADRATURE COUNTING

If you use “count” and “direction,” the count input is always the phase A pin; positive
edges (low-to-high transitions) are counted. The direction input is always the phase B
pin; a logic low means count up, and a high means count down.

phase A
phase B
count up up down down

COUNT-AND-DIRECTION COUNTING

The commands to control position decoding are:

pin QUADRATURE Sets a pair of pins to the quadrature-decoding
mode. The acceptable pin names are QUADO,
QUAD1, TA2, TB2, TCO, TDO, and TD2.*

pin SIGNED Sets a pair of pins to the count-and-direction mode.
The acceptable pin names are the same as for
QUADRATURE.

* Strictly speaking, you could also specify pins TAO or TBO for quadrature input. But this is pointless,
because these use the same input pins as the dedicated quadrature decoders QUADO and QUADLI. If you do
specify TAO or TBO, IsoMax will use the timer registers for counting instead of the dedicated decoder
registers. There’s no good reason to do this. Use QUADO and QUAD1 instead.

pin RESET Resets the position counter to zero.

pin POSITION Returns the current position, as a signed double-
precision integer on the stack. The position counter
is a signed 32-bit counter.

You must specify a decoder mode (QUADRATURE or SIGNED) before you can use
RESET or POSITION. So, the normal procedure for reading a position encoder is, first,
specify the mode, second, reset the position to zero, and then read the position as desired.
For example:

QUADO QUADRATURE

QUADO RESET
QUADO POCSI TI ON D. (prints 0)
(move shatft)
QUADO PQOSI TI ON D. (prints new shaft position)
TDO S| GNED
TDO RESET
TDO PQOSI TI ON D. (prints 0)
(move shatft)
TDO PGCSI TI ON D. (prints new shaft position)

Note the use of D. to print a signed double-precision integer.

Warning: if you use one of the timer pins for output — including the timer pins shared
with the QUADO or QUAD1 decoders — then that will interfere with the use of that pin for
decoder input. For example, if you say TAO ON, that will interfere with the QUADO
decoder. If yousay TA3 OFF, that will interfere with the TA2 decoder (since TA2 is
paired with TA3 as a decoder).

Also, using one of the timer pins for input will disable the quadrature counter for that pin,
so you shouldn’t use any of the input functions (like ON? and OFF ?).

Position decoding is done with dedicated counter hardware, so it does not require
software intervention to keep an accurate count. The POSITION value will always be
accurate, regardless of how frequently you read it.

2.4.1. MinPod Encoder Inputs

The MinPod™ has fewer input pins, and can read up to three position encoders:

object name pins used for phase A, B
QUADO PHASEAO, PHASEBO
TA2 TA2, TA3 (| NDEXO, HQOVEO)

TD1 TD1, TD2

This takes advantage of the fact that a “1-2” timer pair can be used for quadrature
decoding, as well as a “0-1 or a “2-3” pair. This capability exists on all IsoPod™ and
ServoPod™ boards, but it’s only important on the MinPod’.

2.4.2. Index and Home

The “index” and “home” functions of the two dedicated quadrature counters (QUADO
and QUAD1) are not supported by IsoMax. If you need to use these features, you will
need to program the Quadrature Decoder registers explicitly for this. (Refer to Chapter
10 of the Motorola DSP56F801/3/5/7 Users’ Manual.)

Note that if you use the INDEX0, HOMEO INDEX1, or HOMEI pins for index or home
functions, you cannot use these pins as timer or counter inputs.

2.5. “Software UART?” Serial I/0
(Version 0.69 and later)

Sometimes you need more than the two serial channels SCTI0 and SCI1. Beginning with

IsoMax™ version 0.69, you can use the port E GPIO pins for asynchronous serial input
or output:

PE2 PE3 PE4 PE5 PE6 PE/

To use one of these pins for serial I/0, you must first specify that the pin is to be used for
serial data, and whether the pin is an input or an output:

pin IS-TX enables the given pin for serial output
pin IS-RX enables the given pin for serial input

This step is very important. If you don’t enable the pin for serial input or output, the
remaining serial functions will malfunction, and may even freeze the ‘Pod™. (You won’t
damage the ‘Pod™, but you might have to press RESET or cycle its power.) So
remember to use IS-TX or IS-RX. If you are creating an application which will
autostart, be sure to put the required IS-TX and I S-RX statements in your initialization
code.

Of course, a single pin can be either an input or an output, but not both at the same time.
To create a full-duplex serial port you will need to use two pins. For example, you might
use PE2 for serial input and PE3 for serial output:

PE2 IS-RX PE3 IS-TX

> Of course, any timer can only take part in one pair. You can’t use TDO-TD1 and TD1-TD2 on an IsoPod,
for example. You couldn’t connect four encoder signals to three timer pins anyway.

2.5.1. Setting the Baud Rate

Y ou must also specify the baud rate for each pin. There is no default baud rate! Before
you can use a pin for serial input or output, you must set its baud rate. You do this with
the same command you used for the SCI ports:

DECIMAL 9600 PE2 BAUD 9600 PE3 BAUD

Note that you must specify the baud rate for each pin. Since the pins are completely
independent, you can specify different baud rates for each. You can specify a baud rate
from 300 to 57600 (decimal), but remember the following two restrictions:

RESTRICTION #1. The actual baud rate will be an integer division of a 625 kHz clock,
that is, 625000/N. You can specify any baud rate, and the ‘Pod™ will give you the
nearest baud rate it can attain. But for some rates this will be a poor approximation. You
can’t get very close to 19200, 38400, or 57600, attempting to use these baud rates will
give poor performance. The highest “standard” rate that is accurately supported is 9600
baud (625000/65). Certain baud rates, like 31250 baud, can be exactly reached.

RESTRICTION #2. Because these serial data streams are being sent and received by
software, they put a load on the CPU. This load depends on the baud rate. The limit is a
total of approximately 60,000 bits per second, all pins combined. So, you can run six
pins simultaneously at 9600 baud (6*9600 = 57600).

2.5.2. Sending and Receiving Serial Data

The basic operations on the serial port are TX and RX:

pin TX transmit one byte on the serial output
pin RX receive one byte on the serial input

These work the same as the TX and RX operations on the SCI port. The data format is
fixed as 8 data bits, 1 stop bit, no parity.

Two cautions to keep in mind:

CAUTION #1. If you attempt to transmit on a pin which has not been enabled for
transmission with IS-TX, TX will wait forever for a "transmit ready" condition. It is
safest to check with TX? before sending a character. (See the next section.)

CAUTION #2. If you attempt to receive on a pin which has not been enabled with IS-
RX, RX will wait forever. It will not see any serial data sent to that pin. It is safest to
check with RX? before receiving a character. (See the next section.)

2.5.3. Polling the Serial Status

RX will wait for a character to be received, unless there’s already one waiting in the serial
data register. This may lead to “Program Counter Capture,” where the processor sits in a
loop waiting for an external event. Even worse, if you forget to initialize the pin with
IS-RX, the program will never see the serial input data, and will wait forever.

To avoid this, poll the pin before attempting to read it. You do this with
pin RX? check to see if a receive character is available

RX? will never wait. It will instantly return a true (non-zero) value if a character is
available, or a zero value if no character is waiting in the receiver. It does not fetch the
character from the receiver. If RX? returns true, you must follow it with RX to get the
character. For example, the phrase:

PE2 RX? IF PE2 RX ELSE -1 THEN

will safely check to see if a byte has been received on PAO. If so, it will return the byte;
if not, it will return -1. In an IsoMax state machine, you might want the condition PE2
RX? to cause a transition to another state, and then read the received character in that new
state.

TX might also wait, if a previous character hadn’t finished transmitting. And if the pin
hasn’t been enabled with TS-TX, TX will wait forever! So, even for serial output, it’s
best to poll the pin.

pin TX? check to see if transmitter is ready for a character

TX? will instantly return a true (non-zero) value if the transmitter can accept a character
now. It will return a zero value if the transmitter is busy, that is, if the transmitter is still
sending the last character and can’t accept a new one yet. You could use this in
procedural code to do something else while waiting:

(data) BEGIN do-something-else PE3 TX? UNTIL PAl TX

but the most effective way to use this is within an IsoMax state machine. When the
condition PE3 TX? is true, you can cause a transition to a new state that outputs the
data.

2.5.4. Serial Buffering

When a GPIO pin is used for serial input, it has a single-character buffer. The first
character received is held in a buffer while the second character is being shifted in. As
soon as the second character is completely shifted in, it will be transferred to the receive
buffer. So, you have only one byte period (ten bit periods) to notice and read the
received character.

GPIO pins used for serial output are not buffered. You cannot send another character
until the first character has been completely shifted out (including its stop bit). This
means that -- unless you sit in a very tight loop waiting to do output — you will not
achieve the full theoretical data rate for the serial channel. There will always be short
delays between characters. Normally this is not problem, but you should be aware of
this limitation.

The GPIO pins do not have the ability to define larger buffers with RXBUFFER and
TXBUFFER.

If you are expecting a continuous stream of serial data at high baud rates, you should use
the SCTIO0 or SCI1 ports. The GPIO pins are better suited to lower baud rates, or to
protocols (such as half-duplex or packet transmission) where the arrival of data can be
predicted.

2.5.5. Stopping and Starting the Serial Engine

Normally it will not be necessary to stop the software “engine” that does serial I/0.
When there is no serial input or output activity on the GPIO pins, the engine will
automatically go into a quiescent state and will use no CPU cycles.

For debugging purposes, though, you can shut off the engine with the command
SSTOP turn off the serial I/O processing

You turn the software engine back on with the command
SSTART initialize and activate the serial 1/O processor

CAUTION #3. You will need to do this if you do a COLD or a SCRUB. As a safety
feature, COLD and SCRUB turn off all timer functions, including all IsoMax state
machines and the serial engine. So after you do a COLD, the serial I/O functions will not
work until you either do SSTART or reset the processor.

2.6. Indexed Pin I/O (Pin Numbering)
(Version 0.68 and later)

Sometimes you’d like to refer to the input/output pins by number instead of by name.
Perhaps you need to write a program that receives a number N from 0 to 7, and must send
back the current value of analog input N. Or perhaps you want to treat eight input bits as
an array. To enable this kind of programming, IsoMax now supports pin numbering.

To reference a pin by number, you use the phrase

n PIN

669

instead of the pin’s name. “n” need not be explicitly written. It can be fetched from a
variable, or from a loop index, or the result of a calculation.

2.6.1.

Pin Numbering

Pin # TiniPod PlugaPod MinPod IsoPod ServoPod
1 n/a n/a PAO PAO PAO
2 n/a n/a PAl PA1 PA1
3 n/a n/a PA2 PA2 PA2
4 n/a n/a PA3 PA3 PA3
5 n/a n/a PA4 PA4 PA4
6 n/a n/a PAS PAS PAS
7 n/a n/a PA6 PA6 PA6
8 n/a n/a PA7 PA7 PA7
9 ISAO/PWMAO ISAO/PWMAO | PE3 PBO PB0O
10 ISA1/PWMAL1 ISA1/PWMA1 | PE4 PBI PBI
11 ISA2/PWMA?2 ISA2/PWMA2 | PE5 PB2 PB2
12 FAULTAO0/ FAULTAO0/ PE6 PB3 PB3
PWMA3 PWMA3
13 FAULTA1/ FAULTA1/ PE7 PB4 PB4
PWMA4 PWMA4
14 FAULTA2/ FAULTA2/ TAO/PHASEAO | PB5 PB5
PWMAS PWMAS
15 TDI TD1 TA1/PHASEBO | PB6 PB6
16 TD2 TD2 TA2/INDEX0 PB7 PB7
17 TAO TAO TA3/HOMEOQO PE2 PE2
18 TAI TAI TDI PE3 PE3
19 TA2 TA2 TD2 PE4 PE4
20 TA3 TA3 PWMAO PES PES5
21 PE4 PE4 PWMAI PE6 PE6
22 PES5 PES PWMA?2 PE7 PE7
23 PE6 PE6 PWMA3 TAO/PHASEAO | TAO/PHASEAO
24 PE7 PE7 PWMA4 TA1/PHASEBO | TA1/PHASEBO
25 n/a PWMAS TA2/INDEX0 TA2/INDEXO0
26 n/a FAULTAO TA3/HOMEOQ TA3/HOMEOQ
27 n/a FAULTA1 TBO/PHASEA1 | TBO/PHASEA1
28 n/a FAULTA2 TB1/PHASEB1 | TB1/PHASEBI
29 n/a FAULTA3 TB2/INDEX1 TB2/INDEX1
30 n/a ISAOQ TB3/HOMEI TB3/HOMEI
31 n/a ISA1 TCO TCO
32 n/a ISA2 TC1 TC1
33 ADCI1 ADCO TDO TDO
34 ADCO ADCI1 TDI TDI
35 ADC3 ADC2 TD2 TD2
36 ADC2 ADC3 TD3 TD3
37 ADC5 ADC4 PWMAO PWMAO
38 ADCA4 ADC5 PWMAI PWMAI
39 ADC7 ADC6 PWMA?2 PWMA2
40 ADC6 ADC7 PWMA3 PWMA3
41 PA1 PWMA4 PWMA4
42 PAO PWMAS PWMAS
43 PA3 PWMBO PWMBO
44 PA2 PWMBI1 PWMBI1
45 PA5S PWMB2 PWMB2
46 PA4 PWMB3 PWMB3

Pin # TiniPod PlugaPod MinPod IsoPod ServoPod
47 PA7 PWMB4 PWMB4
48 PA6 PWMBS5 PWMBS5
49 FAULTAO FAULTAO
50 FAULTALI FAULTAI
51 FAULTA2 FAULTA2
52 FAULTA3 FAULTA3
53 FAULTBO FAULTBO
54 FAULTBI1 FAULTBI
55 FAULTB2 FAULTB2
56 FAULTB3 FAULTB3
57 ISA0 ISAO

58 ISA1 ISA1

59 ISA2 ISA2

60 ISBO ISBO

61 ISB1 ISB1

62 ISB2 ISB2

63 ADCO ADCO

64 ADCI1 ADCI1

65 ADC2 ADC2

66 ADC3 ADC3

67 ADC4 ADC4

68 ADCS ADC5

69 ADC6 ADC6

70 ADC7 ADC7

71 ADCS

72 ADC9

73 ADCI10

74 ADCIl11

75 ADCI12

76 ADCI13

77 ADC14

78 ADCI15

For the TiniPod, the pin numbers correspond to the numbering of the J1 connector.

For the PlugaPod, the first 24 pin numbers correspond to the numbering of the J1
connector. The next 24 pin numbers correspond to the numbering of the J5 connector
(offset by 24).

For the MinPod, IsoPod, and ServoPod, since they each have several I/O connectors,
the pin numbering does not correspond directly to any of them. Instead, the pin
numbering is “functional,” as shown in the table above.

2.6.2. Supported I/O Functions

Only a limited set of functions can be used with PIN.

If you use a function which is not supported on a given pin — such as trying to do output
on an input-only pin, or ANALOGIN on a digital pin — the ‘Pod™ will take what it
considers the most reasonable action. This action will always have the expected stack

effect (i.e., it will take something from the stack, or put something on the stack). The
‘Pod™ will also do this if you specify an invalid pin number.

The supported functions are:

ON, OFF, TOGGLE ...on pins capable of digital output, these will have the expected
result. On pins which are “input-only” pins (FAULTxx, I Sxx, ADCx), these will
do nothing.

SET ...on pins capable of digital output, this will have the expected result. On pins
which are “input-only,” this will simply discard the input argument.

ON?, OFF? ...on pins capable of digital input, these will have the expected result. On
the analog input pins (ADCx), both ON? and OFF? will always return zero.

The “output-only” pins (PWMxx) are a special case. On the MinPod, IsoPod, and
ServoPod, these will return the value last output to the pin (i.e., they will perform
the functions of 20N and ?OFF).

On the TiniPod and PlugaPod, each of these output pins is paired with an input
pin, so each pin does have an input function. Thus, on the TiniPod,

9 PIN ON is equivalent to PWMAO ON but
9 PIN ON? isequivalent to ISAQ ON?

Note that if you have used such a pin for output, the output will remain enabled,
and so ON? and OFF? will return the current output state.

ANALOGIN ...on analog input pins, this will have the expected result. On pins
capable of digital input, this will return $FFFF if the input is high, or 0 if the input
is low; i.e., the same function as ON?. On “output-only” pins, this will act the
same as ON? (see above).

PWM-PERIOD, PWM-OUT ...on pins capable of PWM output (PWMxx and Txx),
these will have the expected result. On all other pins, these will simply discard
the input parameters.

For all other I/O operations, you must refer to pins by name. In particular, the serial I/O
operations (TX, RX, etc.) cannot be used with PIN. You must name the SCI port or
GPIO pin that you wish to use.

2.6.3. Examples

This word, on the IsoPod™, will print the current values of all eight analog inputs:

DECIMAL 63 CONSTANT FIRST-ADC
71 CONSTANT LAST-ADC+1

.ANALOGS
LAST-ADC+1 FIRST-ADC DO I PIN ANALOGIN . LOOP

This word, on the MinPod, will return true if any of the timer inputs is high.

DECIMAL 14 CONSTANT FIRST-TIMER
20 CONSTANT LAST-TIMER+1
: ANY-HIGH? (-- £)
0 LAST-TIMER+1 FIRST-TIMER DO I PIN ON? OR LOOP

’

This word, on the PlugaPod, will set the duty cycle of the six PWM outputs to match the
analog values read on the first six analog inputs. (It assumes that PWM-PERIOD has
already been set.) This would allow six potentiometers, connected to ADCO-5, to control
the speed of six motors, connected to PWMAUO-5.

DECIMAL 9 CONSTANT FIRST-PWM
15 CONSTANT LAST-PWM+1
33 CONSTANT FIRST-ADC
FIRST-ADC FIRST-PWM - CONSTANT ADC-OFFSET
: ADC-TO-PWM
LAST-PWM+1 FIRST-PWM DO
I ADC-OFFSET + PIN ANALOGIN I PIN PWM-OUT
LOOP

2.7. Using Trinaries for I/O

The input and output “methods” that have been described in this chapter are intended to
be easy to use, and to get you up and running quickly. So, most of them will perform any
port initialization that is required, even if the port has already been initialized. Trinaries
are defined in section 4.9.

	I/O PROGRAMMING
	Bit Output
	Bit Input
	Byte Input and Output
	Serial Communications Interface (SCI)
	Setting the Baud Rate
	Polling the SCI Status
	Serial Receive Buffering
	Serial Transmit Buffering
	Terminal I/O
	A Serial I/O IsoMax Example

	Serial Peripheral Interface
	Setting the SPI Parameters
	Serial Receive Buffering (version 0.6)
	Serial Transmit Buffering (version 0.6)
	An SPI Master-Slave Example
	
	
	PE6/MISO (PE6/MISO

	PWM Output
	Half Speed Operation
	Output Polarity
	Complimentary PWM Output

	PWM Input
	Input Polarity
	Example

	Analog-to-Digital Conversion
	Quadrature (Position) Decoders
	MinPod Encoder Inputs
	Index and Home

	“Software UART” Serial I/O
	Setting the Baud Rate
	Sending and Receiving Serial Data
	Polling the Serial Status
	Serial Buffering
	Stopping and Starting the Serial Engine

	Indexed Pin I/O (Pin Numbering)
	Pin Numbering
	Supported I/O Functions
	Examples

	Using Trinaries for I/O

