MPE Forth for TintARM

User Manual

Microprocessor Engineering Limited

Copyright (©) 2004, 2005, 2007 Microprocessor Engineering Limited
Published by Microprocessor Engineering

MPE Forth for TiniARM
User manual

Manual revision 1.10

16 April 2007

Software
Software version 6.30

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441

Fax: +44 (0)23 8033 9691

e-mail: mpe@mpeltd.demon.co.uk
tech-support@mpeltd.demon.co.uk
web: www.mpeltd.demon.co.uk

Table of Contents

1

Introduction 1
1.1 About Forth 1
1.2 About the manual........ ... 2
1.3 If disaster strikes 3
1.4 Using other terminal emulators. 3
1.5 Technical SUPPOTto 3
1.6 LACENSING . o o oottt e e 4

ARM code definitions, 5
2.1 N S . et)
2.2 Register Usage.ot)
2.3 Configuration 5
2.4 Logical and relational operators 5
2.5 Control low 7
2.6 ArTIthmetic 8
2.7 Stack manipulation 10
2.8 String and MemMOry OPETatorS.ttt ettt e 11
2.9 Miscellaneous WOrdsttt e e 13
2.10 Portability helpers. 13
2.11 Runtime for VALUE e 14
2.12 Defining words and runtime support 14
2.13 Structure compilation. 15
2.14 Branch constructors 16
2.15 Main structure compilers. 16
2,16 MiISCEllaneous oo vttt e 17

High level kernel KERNEL62.FTH..................... 19
3.1 User variablest 19
3.2 System COonsStants 20
3.3 System VARIABLEs and Buffers 20

3.3. 1 Variableso 20
3.4 Deferred words 21
3.5 Predefined Vocabularies. i 21
3.6 Vectored I/O handling............ 21

3.6.1 Introduction. 21

3.6.2 Building a vector table 21

3.6.3 Generic I/O Words 21
3.7 String and memory Operations.ttt 22
3.8 Dictionary managemento ottt 23
3.9 String compilation. 24
3.10 Pre-ANS Exception handlers 25
3.11 ANS words CATCH and THROW 25

3.11.1 Example implementation 25

3.11.2 EXampPle USE . . oottt 26

3.11.3 GotChas . ..o 27
3.12 Formatted and unformatted i/o 27

3.12.1 Setting number bases 27

ii

MPE Forth for TinitARM

3.12.2 NUumeric OUtPULttt ettt e e e 28
3.12.3 Numeric Inputbo 28
3.13 String input and output 29
3.14 Source Input control 29
3.15 Text SCANNING . . . oo oottt et ettt e e 30
3.16 MiSCellaneousottt e 30
3.17 Wordlist control. 31
3.18 Control StruCtUTES oot e 32
3.19 Target interpreter and compiler. 33
3.20 Compilation and Caches 35
321 SEArtup COAE . .. v ettt et et 36
3.21.1 Cold Chaill 36
3.21.2 The COLD SEqUENCEottt e ettt e e e e e e e e e e 36
3.22 Kernel error codes.t 36
3.23 Differences between the v6.1 and 6.2 kernels.............. 37
3.23.1 Error handling........ ... 37
3.23.2 Terminal input buffer and ACCEPT....... 38
Target VALUE and local variables...................... 39
Development tools 41
Debugging tools.......... ...ttt 43
6.1 Implementation dependencies. i 43
6.2 Miscellaneousot 44
6.3 Stack checking 46
6.4 ASSEITIONS . .\ttt 47
Interrupt handlers................., 49
7.1 Configurationt 50
7.2 Interrupt management 51
7.3 SWI handler 51
7.4 Support for complex abort handlers........ 52
7.5 Undefined instruction handler 53
7.5.1 Simple UNDEF handler 53
7.5.2 Complex UNDEF handler 53
7.6 Prefetch Abort handler 53
7.6.1 Simple PABORT handler......... 53
7.6.2 Complex PAbort handler........ 53
7.7 Data Abort handler ... 54
7.7.1 Simple DAbort handler. 54
7.7.2 Complex DAbort handler....... 54
7.8 Reserved (26 bit address exception) handler 54
7.9 Generic IRQ handler. 54
7.10 Generic FIQ handler. 55
711 AT91 TRQ and FIQ handlers 55
7.12 Samsung S3C4510 IRQ and FIQ handlers 57
7.13 ARM PL190 IRQ and FIQ handlers 58
Character QuUeuUesttt inenrenennns 61
8.1 Queue data StrUCtUTettt 61

8.2 Queue Primitivesottt 61

9 Serialdrivero e 63
9.1 Configuration 63
9.2 Serial interrupt service routines. 63
9.3 Initialisation 63
9.4 Serial primitives. 63
9.5 Generic 1/0 aSSIGNIMENESottt ettt 64
9.6 Forth Stamp specific code. 64

10 LPC software I2C driver.............cooiiiinnnn.. 65
10.1 Introduction 65
10.2 0 TN . o oo 65
10.3 I2C bit functionst e 65

11 I2C generic primitives...........coiiiiiiinnnnnennns 67

12 Software Floating Point 69
12,1 Introduction 69
12.2 S0Urce code. . ..o 69
12.3 Entering floating-point numbers 69
12.4 The form of floating-point numbers 69
12.5 Creating variables e 70
12.6 Accessing variables 70
12.7 Creating COnStants oottt 70
12.8 Using the supplied words 70

12.8.1 Calculating sines, cosines and tangents 70
12.8.2 Calculating arc sines, cosines and tangents................................ 70
12.8.3 Calculating logarithms 71
12.8.4 Calculating pOWeTS.ot 71
12.9 Degrees or radians.ottt 71
12.10 Displaying floating-point numbers 71
12.11 Changes from v6.0 t0 V6.1 o 71
12.11.1 32 bit targets: software floating point, 71
12.11.2 16 bit targets: software floating point 72
1212 GLOSSATY - o e ettt e e e e e e 72
12.12.1 Basic stack and memory operators i 72
12.12.2 Floating point defining words 73
12.12.3 TYPE CONVETSIONS . . o v v vttt ettt et e e e e e e e e e e e 73
12.12.4 Arithmetic oo 73
12.12.5 Relational operatorst 74
12.12.6 Rounding 74
12.12.7 Miscellaneous.ot 75
12.12.8 Floating point output 75
12.12.9 Floating point inpub 76
12.12.10 Trigonmetric functionso 7
12.12.11 Power and logarithmic functions 78
12.13 ARM coded primitives.ttt 78

13 Periodic Timers........... ... iiiinnn.. 81
13.1 The basics of timers 81
13.2 Considerations when using timers............ i 82
13.3 Implementation iSSUESt 82

13.4 Timebase gloSSaryt 83

iv MPE Forth for TinitARM

14 Time Delayscoiiiiiiiiiie it ennnnnns 85
15 LPC210x Ticker Interrupt 87
15.1 Configuration equatest 87
15.2 Ticker interrupt handler 87
15.3 Time base exXtensionsttt 88
16 ARM multitasker, 89
16.1 Configuration - normally performed earlier 89
16.2 TCB data structure layout 89
16.3 Task handling primitives. 89
16.4 Event handling. 90
16.5 Message handling 90
16.6 Task structure management 90
16.7 Semaphiores 91
16.8 TASK and START: 91
16.9 Debugging tools. 92
17 Vocabulary and wordlist tools......................... 93
18 ROM PowerForth utilities 95
18.1 Introduction e e 95
18.2 Compiling text files. 95
18.2.1 The required fileso 95
18.2.2 Compiling a specified text file........ 95

18.3 XMODEM binary image download i 95
18.4 XMODEM binary image upload 96
18.5 TODEFE.FETHo 96
18.5.1 AIDE SUPPOTt .« o oottt e e e e e 96

18.6 MiSCellan@Oous . . . oo\ttt 96
18.7 INCLUDE source code from AIDE 97
18.8 Simple source file loader 97
19 XMODEM Receiver and Transmitter.................. 99
19.1 Introduction 99
19.2 Words in XmodemTxRx.fth. 99
19.2.1 Configuration. 99
19.2.2 Constants and variables 99
19.2.3 Common COAEttt e e 99
19.2.4 XMODEM transmissionttt 100
19.2.5 XMODEM receptioncouuiie e 100
19.2.6 Defaultso 101

20 Philips LPC2xxx IAP routines....................... 103
20.1 GOLCRAS . . ottt 103
21 LPC2000 Flashtools.............. ..., 105
21.1 Flash primitiveso 105

21.2 Flash driver. 105

22 Philips LPC2xxx Reflashing 107
221 Introductiont 107
22.2 Code in main application 107

23 Rebootingthe CPU........... ..., 109

24 Creating turnkey applications........................ 111
24.1 Introductiont 111
24.2 Saving applications 111
24.3 Reloading and starting applications............ 112
24.4 Cross Compiler Compatibilityo 112
24.5 GOtChas 113
24.6 Application License. 113

25 Examples directoryccoiiiiiiiiiiiiia.. 115
25. 1 Main direCtoryot 115
25.2 Contributions subdirectory 115
25.3 120 subdirectoryot 116
25.4 SPIL SUDAITECHOTY . . .\ttt e e e e e 116

26 Frequently Asked Questions 117
26.1 Where are the hardware manuals? 117
26.2 Setting up AIDE for TiniARM 117

26.3 Quick guide to compile and REFLASH. 117

vi

MPE Forth for TinitARM

Chapter 1: Introduction 1

1 Introduction

This manual documents the MPE PowerForth system supplied with your TiniARM. The
TiniARM hardware is documented separately.

The hardware is complemented by its default software. The MPE PowerForth system provided
with the board in the first 64k of the Flash contains a Forth compiler and interpreter, multitasker,
timebase, floating point, comms utilities, flash utilities and maintenance tools.

An additional Development CD is available from MPE that contains useful tools for developing
applications on the NMI TiniARM, MPE USB Stamp and other LPC2xxx boards. Run the
installer USBSTAMP.EXE which will install the tools. Configuration details are at the start of
the USBSTAMPCODE.PDF manual.

If you have the MPE Development Kit Plus CD and/or are using the on-board IAP Flash
programming routines, the following is important. If you have problems with the on-board Flash
programming routines, check the LPC2106 bootloader version using the Philips ISP software or
by typing

IAPBootVer .dword

which will give something of the form:
0000:xxyy

where xx is the major version number and yy is the minor version number. If this number is less
than 0000:0134 (hexadecimal) or 1.52 (decimal) you should update the bootloader using ISP
software version 2.2.0 or greater. These are available on the MPE CDs and from

www.semiconductors.philips.com
/files/products/standard/microcontrollers/utilities/
1pc2000_flash_utility.zip
1pc2000_bl_update.zip

Note that v1.52 is only for the LPC2104/5/6 and v1.63 is required for other parts such as the
LPC2119/2129. A PDF file in the update describes how to perform the update.

1.1 About Forth

Forth is an interactive programming language widely used for embedded systems ranging from
bomb disposal machines to embedded web servers, seismic data loggers and safety critical med-
ical equipment. An evaluation version of MPE’s VFX Forth for Windows is available for free
download from

http://www.mpeltd.demon. co.uk

To run VFX Forth for Windows, send an email with your name, address and contact details to:

mailto://vixtrial@mpeltd.demon.co.uk

An installation key will then be provided.

2 MPE Forth for TinitARM

1.2 About the manual

This manual is derived directly from the Forth source code used to generate the on-chip Forth.
The full source code is supplied with the MPE VFEX ARM Forth Cross Compiler. Consequently
the documentation includes some words that do not have target entries in the on-chip Forth.

Some words and code routines are marked in the documentation as INTERNAL. These are
factors used by other words and do not have dictionary entries in the standalone Forth. They
are only accessible to users of the VFX Forth ARM Cross Compiler. This also applies to
definitions of the form:

n EQU <name>

PROC <name>

L: <name>

AIDE is an Integrated Development Environment (IDE) that includes a simple editor for your
source code and a terminal emulator (PowerTerm) tuned for use with the PowerForth on the
board. AIDE is provided on the MPE Development CD. Use the Properties button on the
PowerTerm toolbar to select the COM port. The baud rate should be 115200 for the TiniARM.
On the Properties -> Configure Console Window page, ensure that the Enable File Server box
is checked. When AIDE is closed, these settings will become the defaults next time.

Commands typed directly into the Forth interpreter do not execute until the ENTER/CR key
is pressed.

Write a simple Forth word, e.g.

: hello \ —-
cr cr ." Hello, world!" cr
Execute it:

@ello

}

It will run. You can put the same code in a text file, conventionally with a .FTH extension such
as hello.fth. Compile the file (using AIDE and PowerTerm) with:

[include hello.fth

J

The file will be compiled on the board and you can execute the word by typing HELLO again.

Save the compiled image:

&) turnkey

Either reset the board using the reset button or by typing:

Chapter 1: Introduction 3

[reboot

The board will reboot, and the word HELLO will already be part of the system.

You can clear out your previous work by typing EMPTY and rebooting:

Eampty reboot }

1.3 If disaster strikes

If you get the board into a bad state and it will not sign on, you may need to reload the
kernel program. Reprogram the board using the Philips ISP utility. The file to load is BINA-
RIES\SERSTAMP.HEX.

If the board still misbehaves, reload the flash with BINARIES\SERRECOVER.HEX and run
the board. This empties the serial EEPROM before signing on. Once you have seen the recovery
messages and PowerForth has signed on, you can use

Geflash J

to reload SERSTAMP.IMG and carry on in the normal way.

1.4 Using other terminal emulators.
AIDE and PowerTerm are designed for use with PowerForth and include a source file server. If

you prefer, you can use other terminal emulators, but will lose some facilities.

Set HyperTerm or another terminal emulator to 115200 baud, 8 data bits, no parity, 1 or 2 stop
bits. Select the relevant COM port for the USB ARM Stamp and reset it. It will sign on. If it
does not sign on, repeat the process with a serial cable that has pins 2 and 3 swapped, e.g. a
null modem cable. If all else fails, reflash the system as described elswhere in this manual.

Please be aware that the standard Windows version of HyperTerm is very slow. A nuch faster
alternative is HyperTerminal Personal Edition from:

http://www.hilgraeve.com

1.5 Technical support

Technical support is available from your supplier in first instance, or from MicroProcessor En-
gineering.

4 MPE Forth for TinitARM

-

tel: +44 (0)23 8063 1441

fax: +44 (0)23 8033 9691

net: mpe@mpeltd.demon.co.uk
tech-support@mpeltd.demon.co.uk

web: www.mpeltd.demon.co.uk

From North America, our telephone and fax numbers are:
011 44 23 8063 1441
011 44 23 8033 9691

=

1.6 Licensing

You may only use the supplied code with boards manufactured by MicroProcessor Engineering
Ltd. and New Micros Inc. If you want to distribute the code you have two options.

e Purchase an MPE VFX ARM Forth Cross Compiler. This includes the full source code for
the ARM Forth Stamp and unlimited application distribution rights, provided that you do not
ship an open Forth interpreter. If you need to ship an open Forth interpreter for engineering
and maintenance access, you must get permission from MPE in writing (a fax will do), and this
is normally provided free of charge.

e Purchase an OEM PowerForth license, either on a quantity basis or an unlimited basis. This
license includes rights to redistribute the software manuals in PDF and HTML form.

Chapter 2: ARM code definitions 5

2 ARM code definitions

2.1 Notes

Some words and code routines are marked in the documentation as INTERNAL. These are factors
used by other words and do not have dictionary entries in the standalone Forth. They are only
accessible to users of the VFX Forth ARM Cross Compiler. This also applies to definitions of
the form:

n EQU <name>
PROC <name>

L: <name>
2.2 Register usage

On the ARM the following register usage is the default:

(N
rlb pc program counter
ri4 link link register
rl3 rsp return stack pointer
ri2 psp data stack pointer
riil up user area pointer
rl0 tos cached top of stack
r9 1p locals pointer
r0-r8 scratch
- J

The VEFX optimiser reserves RO and R1 for internal operations. CODE definitions must use R10
as TOS with NOS pointed to by R12 as a full descending stack in ARM terminology. R0..R8
are free for use by CODE definitions and need not be preserved or restored. You should assume
that any register can be affected by other words.

2.3 Configuration
false equ HIGH-LEVEL-ROLL \ -- flag
Set this equate true to compile a high level version of ROLL.

false equ CLZ? \ -- flag
Set this non-zero to compile CLZ.

2.4 Logical and relational operators
CODE AND \ x1 x2 -- x3
Perform a logical AND between the top two stack items and retain the result in top of stack.

CODE OR \ x1 x2 -- x3
Perform a logical OR between the top two stack items and retain the result in top of stack.

CODE XOR \ x1 x2 —- x3
Perform a logical XOR, between the top two stack items and retain the result in top of stack.

CODE NOT \ x —— x’
Perform a bitwise NOT on the top stack item and retain result.

CODE INVERT \ x —— x’

Perform a bitwise NOT on the top stack item and retain result.

CODE 0= \ x -- flag
Compare the top stack item with 0 and return TRUE if equals.

CODE 0<> \ x —- flag

Compare the top stack item with 0 and return TRUE if not-equal.

CODE 0< \ x —- flag
Return TRUE if the top of stack is less-than-zero.

CODE 0> \ x -- flag
Return TRUE if the top of stack is greater-than-zero.

CODE = \ x1 x2 -- flag
Return TRUE if the two topmost stack items are equal.

CODE <> \ x1 x2 -- flag
Return TRUE if the two topmost stack items are different.

CODE < \ n1 n2 -- flag
Return TRUE if nl is less than n2.

CODE > \ nl n2 -- flag
Return TRUE if nl is greater than n2.

CODE <= \ nl n2 -- flag
Return TRUE if nl is less than or equal to n2.

CODE >= \ x1 x2 -- flag
Return TRUE if nl is greater than or equal to n2.

CODE U> \ u2 u2 -- flag
An UNSIGNED version of >.

CODE U< \ ul u2 -- flag
An UNSIGNED version of <.

CODE DU< \ udl ud2 -- flag
Returns true if udl (unsigned double) is less than ud2.

CODE DO< \ d -- flag
Returns true if signed double d is less than zero.

CODE DO= \ xd -- flag
Returns true if xd is 0.

CODE D= \ xdl xd2 -- flag
Return TRUE if the two double numbers are equal.

CODE D< \ di d2 -- flag

Return TRUE if the double number d1 is < the double number d2.

CODE DMAX \ d1 d2 -- d3 ; d3=max of di1/d2
Return the maximum double number from the two supplied.

CODE DMIN \ d1 d2 -- d3 ; d3=min of d1/d2
Return the minimum double number from the two supplied.

CODE MIN \ n1 n2 -- n1|n2
Given two data stack items preserve only the smaller.

MPE Forth for TinitARM

Chapter 2: ARM code definitions 7

CODE MAX \ n1 n2 -- nl|n2
Given two data stack items preserve only the larger.

CODE WITHIN? \ nl n2 n3 -- flag
Return TRUE if N1 is within the range N2..N3. This word uses signed arithmetic.

CODE WITHIN \ n1|ul n2|u2 n3[u3 -- flag

The ANS version of WITHIN?. This word uses unsigned arithmetic, so that signed compares
are treated as existing on a number circle.

CODE LSHIFT \ x1 u -- x2

Logically shift X1 by U bits left.

CODE RSHIFT \ x1 u - x2

Logically shift X1 by U bits right.

CODE << \ x1 u -- x1<<u

Logically shift X1 by U bits left. Obsolete - replaced by LSHIFT.
CODE >> \ x1 u -- x1<<u

Logically shift X1 by U bits right. Obsolete - replaced by RSHIFT.

2.5 Control flow
CODE EXECUTE \ xt -

Execute the code described by the XT. This is a Forth equivalent to an assembler JSR/CALL
instruction.

CODE BRANCH \ -
The run time action of unconditional branches compiled on the target. INTERNAL.

CODE 7BRANCH \'n -~
The run time action of conditional branches compiled on the target. INTERNAL.

CODE (OF) \ nl n2 -- n1|--
The run time action of OF compiled on the target. INTERNAL.
CODE (L0OP) \ -

The run time action of LOOP compiled on the target. INTERNAL.

CODE (+LOOP) \'n -—-
The run time action of +LO0OP compiled on the target. INTERNAL.

CODE (DO) \ limit index --
The run time action of DO compiled on the target. INTERNAL.

CODE (7DO0) \ limit index --
The run time action of 7?D0O compiled on the target. INTERNAL.

CODE LEAVE \ —-
Remove the current DO. .LOOP parameters and jump to the end of the DO..LOOP structure.

CODE ?LEAVE \ flag —-
If flag is non-zero, remove the current DO. . LOOP parameters and jump to the end of the DO. . LOOP
structure.

CODE I \ -- n
Return the current index of the inner-most DO..LOOP.

CODE J \ - n

8 MPE Forth for TinitARM

Return the current index of the second DO..LOOP.

CODE UNLOOP \ -= ; R: loop-sys --
Remove the DO..LOOP control parameters from the return stack.

2.6 Arithmetic
CODE S>D \'n--4d
Convert a single number to a double one.

CODE D>8 \d --n
Convert a double number to a single.

CODE NOOP \ -~
A NOOP, null instruction.)

proc umul32*32 \ tos:r0 = r0 * tos, corrupts rl, r2, r3
The unsigned 32 * 32 -> 64 bit multiply primitive for CPUs without the long multiply instruc-
tions.

CODE UM \ ul u2 -- ud
Perform unsigned-multiply between two numbers and return double result.

CODE * \ nl n2 -- n3
Standard signed multiply. N3 = nl * n2.

CODE mx* \ nl n2 --d
Signed multiply yielding double result.

proc udiv64/32 \ rO:rl / tos ; 64/32 unsigned divide -> tos=quot, rO=rem
Division subroutine - unrolled for a bit of extra speed.

CODE UM/MOD \ ud un -- urem uquot
Perform unsigned division of double number UD by single number U and return remainder and
quotient.

CODE FM/MOD \ dl n2 -- rem quot ; floored division

Perform a signed division of double number D1 by single number N2 and return remainder
and quotient using floored division. See the ANS Forth specification for more details of floored
division.

CODE SM/REM \ d1 n2 -- rem quot ; symmetric division

Perform a signed division of double number D1 by single number N2 and return remainder and
quotient using symmetric (normal) division.

CODE /MOD \ nl n2 -- rem quot

Signed division of N1 by N2 single-precision yielding remainder and quotient.

CODE M/MOD \ dl n2 -- rem quot
A synonym for FM/MOD for Forth-83 compatibility. Obsolete - Use FM/MOD instead.

:/ \ nl n2 -- n3
Standard signed division operator. n3 = nl/n2.

: MOD \ nl n2 -- n3
Return remainder of division of N1 by N2. n3 = nl mod n2.

: */MOD \ n1 n2 n3 -- n4 n4
Multiply n1 by n2 to give a double precision result, and then divide it by n3 returning the
remainder and quotient. The point of this operation is to avoid loss of precision.

Chapter 2: ARM code definitions 9

2o/ \ nl n2 n3 -- né
Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
quotient. The point of this operation is to avoid loss of precision.

s M/ \ d n1 -- n2
Signed divide of a double by a single integer.

: MU/MOD \ d n -- rem d#quot
Perform an unsigned divide of a double by a single, returning a single remainder and a double
quotient.

:omk/ \ dl n2 n3 -- dquot

The result dquot=(d1*n2)/n3. The intermediate value d1*n2 is triple-precision to avoid loss
of precision. In an ANS Forth standard program n3 can only be a positive signed number and
a negative value for n3 generates an ambiguous condition, which may cause an error on some
implementations, but not in this one.

CODE M+ \ dl|udl n -- d2|ud2
Add double d1 to sign extended single n to form double d2.

CODE 1+ \ nllul -- n2|u2
Add one to top-of stack.

CODE 2+ \ nllul -- n2|u2
Add two to top-of stack.

CODE 4+ \ nllul -- n2|u2
Add four to top-of stack.

CODE 1- \ nillul -- n2|u2
Subtract one from top-of stack.

CODE 2- \ nilul -- n2|u2
Subtract two from top-of stack.

CODE 4- \ nilul -- n2|u2
Subtract four from top-of stack.

CODE 2x* \ x1 -—- x2
Signed multiply top of stack by 2.

CODE 4x* \ x1 —- x2
Signed multiply top of stack by 4.

CODE 2/ \ x1 -- x2
Signed divide top of stack by 2.

CODE U2/ \ x1 -- x2
Unsigned divide top of stack by 2.

CODE 4/ \ x1 -- x2
Signed divide top of stack by 4.

CODE U4/ \ x1 -- x2
Unsigned divide top of stack by 4.

CODE + \ nllul n2|u2 -- n3|u3
Add two single precision integer numbers.

CODE - \ nllul n2|u2 -- n3|u3

10 MPE Forth for TinitARM

Subtract two single precision integer numbers. N3|u3=nl|ul-n2|u2.

CODE NEGATE \ nl -- n2

Negate a single precision integer number.

CODE D+ \ d1 d2 -- d3

Add two double precision integers.

CODE D- \ dl d2 -- d3

Subtract two double precision integers. D3=D1-D2.
CODE DNEGATE \ d1 -- -d1

Negate a double number.

CODE 7NEGATE \ n1 flag -- n1|n2
If flag is negative, then negate nl.

CODE 7DNEGATE \ dil flag -- di|d2
If flag is negative, then negate d1.

CODE ABS \'n--u
If n is negative, return its positive equivalent (absolute value).

CODE DABS \d-- ud
If d is negative, return its positive equivalent (absolute value).

CODE D2 \ xdl -- xd2
Multiply the given double number by two.

CODE D2/ \ xdl -- xd2
Divide the given double number by two.

2.7 Stack manipulation
CODE NIP \ x1 x2 -- x2
Dispose of the second item on the data stack.

CODE TUCK \ x1 x2 -- x2 x1 x2
Insert a copy of the top data stack item underneath the current second item.

CODE PICK \xu .. xOu --xu .. xO xu
Get a copy of the Nth data stack item and place on top of stack. 0 PICK is equivalent to DUP.

: ROLL \ xu xu-1 .. x0 u -- xu-1 .. x0 xu
Rotate the order of the top N stack items by one place such that the current top of stack becomes
the second item and the Nth item becomes TOS. See also ROT.

CODE ROT \ x1 x2 x3 -- x2 x3 x1
ROTate the positions of the top three stack items such that the current top of stack becomes
the second item. See also ROLL.

CODE -ROT \ x1 x2 x3 -—- x3 x1 x2
The inverse of ROT.
CODE >R \ x ——; R: ——x

Push the current top item of the data stack onto the top of the return stack.

CODE R> \ - x ; R: x ——
Pop the top item from the return stack to the data stack.

CODE R@ \ - x ;R: x--x

Chapter 2: ARM code definitions 11

Copy the top item from the return stack to the data stack.

CODE 2>R \ x1 x2 -- ; R: -- x1 x2
Transfer the two top data stack items to the return stack.

CODE 2R> \ —— x1 x2 ; R: x1 x2 —-
Transfer the top two return stack items to the data stack.

CODE 2R@ \ - x1 x2 ; R: =x1 x2 -- x1 x2
Copy the top two return stack items to the data stack.

CODE 2ROT \ x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2
Perform ROT operation on three double numbers.

CODE SWAP \ x1 x2 —- x2 x1
Exchange the top two data stack items.

CODE DUP \ Xx —— x X
DUPlicate the top stack item.

CODE OVER \ x1 x2 -- x1 x2 x1
Copy NOS to a new top-of-stack item.

CODE DROP \ x —-
Lose the top data stack item and promote NOS to TOS.

CODE 2DROP \ x1 x2 -=-)
Discard the top two data stack items.

CODE 2SWAP \ x1 x2 x3 x4 —- x3 x4 x1 x2
FExchange the top two cell-pairs on the data stack.

CODE 7DUP \x - | x
DUPplicate the top stack item only if it non-zero.

CODE 2DUP \ x1 x2 ——- x1 x2 x1 x2
DUPIlicate the top cell-pair on the data stack.

CODE 20VER \ x1 x2 x3 x4 —— x1 x2 x3 x4 x1 %2
Similar to OVER but works with cell-pairs rather than cell items.

CODE SP@ \ - x
Get the current address value of the data-stack pointer.

CODE SP! \ x --
Set the current address value of the data-stack pointer.

CODE RP@ \ -—- x
Get the current address value of the return-stack pointer.

CODE RP! \ x —-
Set the current address value of the return-stack pointer.

2.8 String and memory operators

CODE COUNT \ c-addrl -- c-addr2’ u
Given the address of a counted string in memory this word will return the address of the first
character and the length in characters of the string.

CODE /STRING \ c-addrl ul n -- c-addr2 u2
Modify a string address and length to remove the first N characters from the string.

12 MPE Forth for TinitARM

CODE SKIP \ c-addrl ul char -- c-addr2 u2
Modify the string description by skipping over leading occurrences of ’char’.

CODE SCAN \ c-addrl ul char -- c-addr2 u2

Look for first occurrence of CHAR in string and return new string. C-addr2/u2 describe the
string with CHAR as the first character.

CODE S= \ c-addrl c-addr2 u -- flag
Compare two same-length strings/memory blocks, returning TRUE if they are identical.

: compare \ c-addrl ul c-addr2 u2 -- n 17.6.1.0935

Compare two strings. The return result is 0 for a match or can be -ve/+ve indicating string
differences. If the two strings are identical, n is zero. If the two strings are identical up to the
length of the shorter string, n is minus-one (-1) if ul is less than u2 and one (1) otherwise. If
the two strings are not identical up to the length of the shorter string, n is minus-one (-1) if
the first non-matching character in the string specified by c-addrl ul has a lesser numeric value
than the corresponding character in the string specified by c-addr2 u2 and one (1) otherwise.

: SEARCH (c-addrl ul c-addr2 u2 -- c-addr3 u3 flag)

Search the string c-addrl/ul for the string c-addr2/u2. If a match is found return c-addr3/u3,
the address of the start of the match and the number of characters remaining in c-addrl/ul,
plus flag f set to true. If no match was found return c-addrl/ul and f=0.

code cmove \ c-addrl c-addr2 u --
Copy U bytes of memory forwards from C-ADDRI1 to C-ADDR2.

CODE CMOVE> \ c-addrl c-addr2 u --
As CMOVE but working in the opposite direction, copying the last character in the string first.

CODE ON \ a-addr --
Given the address of a CELL this will set its contents to TRUE (-1).

CODE OFF \ a-addr --
Given the address of a CELL this will set its contents to FALSE (0).

CODE C+! \ b c-addr --
Add N to the character (byte) at memory address ADDR.

CODE 2@ \ a-addr —- x1 x2

Fetch and return the two CELLS from memory ADDR and ADDR+sizeof(CELL). The cell at
the lower address is on the top of the stack.

CODE 2! \ x1 x2 a-addr —-

Store the two CELLS x1 and x2 at memory ADDR. X2 is stored at ADDR and X1 is stored at
ADDR+CELL.

CODE FILL \ c-addr u char --
Fill LEN bytes of memory starting at ADDR with the byte information specified as CHAR.

CODE +! \ nlu a-addr --
Add N to the CELL at memory address ADDR.
CODE INCR \ a-addr --

Increment the data cell at a-addr by one.

CODE DECR \ a-addr --
Decrement the data cell at a-addr by one.

CODE @ \ a-addr —- x

Chapter 2: ARM code definitions 13

Fetch and return the CELL at memory ADDR.

CODE W@ \ a-addr -- w

Fetch and 0 extend the word (16 bit) at memory ADDR.
CODE C@ \ c-addr -- char

Fetch and 0 extend the character at memory ADDR and return.
CODE ! \ x a-addr --

Store the CELL quantity X at memory A-ADDR.

CODE W! \ v a-addr --

Store the word (16 bit) quantity w at memory ADDR.
CODE C! \ char c-addr --

Store the character CHAR at memory C-ADDR.

CODE UPPER \ c-addr u --

Convert the ASCII string described to upper-case. This operation happens in place.

CODE TEST-BIT \ mask c-addr -- flag
AND the mask with the contents of addr and return true if the result is non-zero (-1) or false
(0) if the result is zero. Byte operation.

CODE SET-BIT \ mask c-addr --
Apply the mask ORred with the contents of c-addr. Byte operation.

CODE RESET-BIT \ mask c-addr --
Apply the mask inverted and ANDed with the contents of c-addr. Byte operation.

CODE TOGGLE-BIT \ u c-addr --
Invert the bits at c-addr specified by the mask. Byte operation.

2.9 Miscellaneous words

CODE NAME> \ nfa -- cfa
Move a pointer from an NFA to the CFA or "XT" in ANS parlance.

CODE >NAME \ cfa -- nfa

Move a pointer from an XT back to the NFA or name-pointer. If the original pointer was not
an XT or if the definition in question has no name header in the dictionary the returned pointer
will be useless. Care should be taken when manipulating or scanning the Forth dictionary in
this way.

: SEARCH-WORDLIST \ c-addr u wid -- Olxt 1lxt -1
Search the given wordlist for a definition. If the definition is not found then 0 is returned,

otherwise the XT of the definition is returned along with a non-zero code. A -ve code indicates
a "normal" definition and a +ve code indicates an IMMEDIATE word.

CODE DIGIT \ char n -- Oln true
If the ASCII value CHAR can be treated as a digit for a number within the radix N then return
the digit and a TRUE flag, otherwise return FALSE.

2.10 Portability helpers

Using these words will make code easier to port between 16, 32 and 64 bit targets.

CODE CELL+ \ a-addrl -- a-addr2
Add the size of a CELL to the top-of stack.

14 MPE Forth for TinitARM

CODE CELLS \ nl -- n2
Return the size in address units of N1 cells in memory.

CODE CELL- \ a-addrl -- a-addr2
Decrement an address by the size of a cell.

CODE CELL \ - n
Return the size in address units of one CELL.

CODE CHAR+ \ c-addrl -- c-addr2
Increment an address by the size of a character.

CODE CHARS \ n1 -- n2
Return size in address units of N1 characters.

2.11 Runtime for VALUE

CODE VAL! \ n -- ; store value address in-line
Store n at the inline address following this word. INTERNAL.
CODE VALQ \ -—— n ; read value data address in-line

Read n from the inline address following this word. INTERNAL.

2.12 Defining words and runtime support

L: DOCREATE \ -- addr
The run time action of CREATE. INTERNAL.
CODE LIT \ - x

Code which when CALLED at runtime will return an inline cell value. INTERNAL.

CODE (") \ -- a-addr ; return address of string, skip over it

Return the address of a counted string that is inline after the CALLING word, and adjust the
CALLING word’s return address to step over the inline string. See the definition of (.") for an
example. INTERNAL.

: aligned \ addr -- addr’
Given an address pointer this word will return the next ALIGNED address subject to system
wide alignment restrictions.

: CONSTANT \ x "<spaces>name" -- ; Exec: -- x

Create a new CONSTANT called "name" which has the value "x". When "NAME" is executed
the value is returned on the top-of-stack.

: VARIABLE \ "<spaces>name" -- ; Exec: -- a-addr
Create a new variable called "name". When "Name" is executed the address of the data-cell is
returned for use with @ and ! operators.

: USER \ u "<spaces>name" -- ; Exec: -- addr ; SFP009

Create a new USER variable called "name". The 'u’ parameter specifies the index into the
user-area table at which to place the data. USER variables are located in a separate area of
memory for each task or interrupt. Use in the form: "$400 USER TaskData".

: DOCOLON, \ -
Compile the runtime entry code required by colon definitions. INTERNAL.

lcall \ dest addr --
Install a BL DEST opcode at addr.

: scall, \ addr --

Chapter 2: ARM code definitions 15

Compile a machine code BL to addr. No range checking is performed.

: compile, \ xt --
Compile the word specified by xt into the current definition.

: call, \ dest --
Compile a BL or long CALL into the current definition.

: >BODY \ xt -- a-addr

Move a pointer from a CFA or "XT" to the definition BODY. This should only be used with
children of CREATE. E.g. if FOOBAR is defined with CREATE foobar, then the phrase ’
foobar >body would yield the same result as executing foobar.

I \ C: "<spaces>name" -- colon-sys ; Exec: i*x -- j*x ; R: -- nest-sys
Begin a new definition called "name".

:NONAME \ C: -- colon-sys ; Exec: i*x -- i*x ; R: -- nest-sys
Begin a new code definition which does not have a name. After the definition is complete the
semi-colon operator returns the XT of newly compiled code on the stack.

: DOCREATE, \ --
Compile the run time action of CREATE. INTERNAL.
(;CODE) \ -- ; R: a-addr --

Performed at compile time by ;CODE and DOES>. Patch the last word defined (by CREATE)
to have the run time actions that follow immediately after (;CODE). INTERNAL.

: DOES> \ C: colon-sysl -- colon-sys2 ; Run: -- ; R: nest-sys --
Begin definition of the runtime-action of a child of a defining word. See the section about
defining words in the Five minute Forth chapter. You should not use RECURSE after DOES>.

: CRASH \ —- ; used as action of DEFER
The default action of a DEFERed word. This will simply THROW a code back to the system.

: DEFER \ Comp: "<spaces>name" -- ; Run: i*x —— j*x
Creates a new DEFERed word. A default action, CRASH, is automatically assigned.

: 2CONSTANT \ Comp: x1 x2 "<spaces>name" -- ; Run: -- x1 x2
A two-cell equivalent to CONSTANT.
: 2VARIABLE \ Comp: "<spaces>name" -- ; Run: -- a-addr

A two-cell equivalent to VARIABLE.

: FIELD \ size n "<spaces>name" -- size+n ; Exec: addr -- addr+n

Create a new field within a structure definition of size n bytes.

2.13 Structure compilation

These words define high level branches. They are used by the structure words such as IF and
AGAIN.

: >mark \ -- addr
Mark the start of a forward branch. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.

: >resolve \ addr --
Resolve absolute target of forward branch. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.
: <mark \ -- addr

Mark the start (destination) of a backward branch. HIGH LEVEL CONSTRUCTS ONLY.
INTERNAL.

16 MPE Forth for TinitARM

: <resolve \ addr --

Resolve a backward branch to addr. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.

synonym >c_res_branch >resolve \ addr -- ; fix up forward referenced branch

See >RESOLVE. INTERNAL.

synonym c_mrk_branch< >mark \ -- addr ; mark destination of backward branch

See >MARK INTERNAL.

2.14 Branch constructors

Used when compiling code on the target.

: c_branch< \ addr --
Lay the code for BRANCH. INTERNAL.

: c_7branch< \ addr --
Lay the code for TBRANCH.

: c_branch> \ -- addr
Lay the code for a forward referenced unconditional branch. INTERNAL.

: c_7branch> \ -- addr
Lay the code for a forward referenced conditional branch. INTERNAL.

2.15 Main structure compilers

: c_lit \ 1lit --

Compile the code for a LITERAL. INTERNAL.

: c_drop \ —-

Compile the code for DROP. INTERNAL.

: c_exit \ -

Compile the code for EXIT. INTERNAL.

: c_do \ C: -- do-sys ; Run: nl|ul n2|u2 -- ; R: -- loop-sys
Compile the code for DO. INTERNAL.

: c_7D0 \ C: -- do-sys ; Run: nl|ul n2|u2 -- ; R: -- | loop-sys
Compile the code for 7DO. INTERNAL.

: c¢_L0OOP \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
Compile the code for LOOP. INTERNAL.

: c_+L00P \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
Compile the code for +LOOP. INTERNAL.

variable NextCaseTarg \ -- addr
Holds the entry point of the current CASE structure. INTERNAL.

: c_case \ -- addr
Compile the code for CASE. INTERNAL.
: c_OF \ C: -- of-sys ; Run: x1 x2 -- | x1

Compile the code for OF. INTERNAL.

: c_ENDOF \ C: case-sysl of-sys -- case-sys2 ; Run: --
Compile the code for ENDOF. INTERNAL.

Chapter 2: ARM code definitions 17

: FIX-EXITS \ nl..nn —-
Compile the code to resolve the forward branches at the end of a CASE structure. INTERNAL.

: c_ENDCASE \ C: case-sys -- ; Run: x --
Compile the code for ENDCASE. INTERNAL.

: c_END-CASE \ C: case-sys -- ; Run: x --
Compile the code for END-CASE. INTERNAL. Only compiled if equate FullCase? is non-zero.

: c_NEXTCASE \ C: case-sys -- ; Run: x —-

Compile the code for NEXTCASE. INTERNAL. Only compiled if equate FullCase? is non-zero.
: c_70F \ C: -- of-sys ; Run: flag --

Compile the code for 70F. INTERNAL. Only compiled if equate FullCase? is non-zero.

2.16 Miscellaneous

code clz \ x -- #lz
Count the number of leading zeros in x.

18

MPE Forth for TinitARM

Chapter 3: High level kernel KERNEL62.FTH 19

3 High level kernel KERNEL62.FTH

3.1 User variables

variable next-user \ -- addr
Next valid offset for a USER variable created by +USER.

: +user \ size --
Creates a USER variable size bytes long at the offset given by NEXT-USER and updates it.

tcb-size +user SELF \ task identifier and TCB

When multitasking is enabled by setting the equate TASKING? the task control block for a task
occupies TCB-SIZE bytes at the start of the user area. Thus the user area pointer also acts as a
pointer to the task control block.

cell +user SO \ base of data stack
Holds the initial setting of the data stack pointer. N.B. SO, RO, #TIB and ’TIB must be defined
in that order.

cell +user RO \ base of return stack
Holds the initial setting of the return stack pointer.

cell +user #TIB \ number of chars currently in TIB
Holds the number of characters currently in TIB.

cell +user ’TIB \ address of TIB
Holds the address of TIB, the terminal input buffer.

cell +user >IN \ offset into TIB
Holds the current character position being processed in the input stream.

cell +user XON/XOFF \ true if XON/XOFF protocol in use
True when console is using XON/XOFF protocol.

cell +user ECHOING \ true if echoing
True when console is echoing input characters.

cell +user 0OUT \ number of chars displayed on current line
Holds the number of chars displayed on current output line. Reset by CR.

cell +user BASE \ current numeric conversion base
Holds the current numeric conversion base

cell +user HLD \ used during number formatting
Holds data used during number formatting

cell +user #L \ number of cells converted by NUMBER?
Holds the number of cells converted by NUMBER?

cell +user #D \ number of digits converted by NUMBER?
Holds the number of digits converted by NUMBER?

cell +user DPL \ position of double number character id
Holds the number of characters after the double number indicator character. DPL is initialised
to -1, which indicates a single number, and is incremented for each character after the separator.

cell +user HANDLER \ used in catch and throw
Holds the address of the previous exception frame.

cell +user OPVEC \ output vector

20 MPE Forth for TinitARM

Holds the address of the I/O vector for the current output device.

cell +user IPVEC \ input vector
Holds the address of the I/O vector for the current input device.

cell +user ’AbortText \ Address of text from ABORT"

Set by the run-time action of ABORT" to hold the address of the counted string used by ABORT"
<text>".

#64 chars dup +user PAD
A temporary string scratch buffer.

3.2 System Constants

Various constants for the internal system.

FALSE The well formed flag version for a logical negative
TRUE The well formed flag version for a logical positive
BL An internal constant for blank space

C/L Max chars/line for internal displays under C/LINE
#VOCS Maximum number of Vocabularies in search order
VSIZE Size of CONTEXT area for search order

XON XON character for serial line flow control

XOFF XOFF character for serial line flow control

3.3 System VARIABLEs and Buffers
3.3.1 Variables

Note that FENCE, DP and VOC-LINK must be declared in that order.

WIDTH maximum target name size
FENCE protected dictionary
DP dictionary pointer

VOC-LINK links vocabularies

RP Harvard targets only. The equivalent of DP for DATA space.
SCR If BLOCKS? true; for mass storage
BLK If BLOCKS? true; user input dev: 0 for keyboard, >0 for block

CURRENT Vocabulary/wordlist in which to put new definitions
STATE Interpreting=0 or compiling=-1

CSP Preserved stack pointer for compile time error checking
CONTEXT Search order array

LAST Points to name field of last definition

#THREADS Default number of threads in new wordlists

Chapter 3: High level kernel KERNEL62.FTH 21

3.4 Deferred words

defer NUMBER? \ addr -- d/n/- 2/1/0

Attempt to convert the counted string at ’addr’ to an integer. The return result is either 0
for failed, 1 for a single-cell return result (followed by that cell) or 2 for a double-cell return.
The ASCII number string supplied can also contain implicit radix over-rides. A leading $
enforces hexadecimal, a leading # enforces decimal and a leading % enforces binary. Hexadecimal
numbers can can also be specified by a leading ’0x’ or trailing 'h’. When one of the floating
point packs is compiled, the action of NUMBER? is changed.

defer ERROR \ n -—- ; error handler

The standard error handler reports error n. If the system is loading, the offending line will be
displayed. Now implemented by default as a synonym for THROW. Removed from v6.2 onwards.
Use THROW instead.

3.5 Predefined Vocabularies

FORTH Is the standard general purpose vocabulary

ROOT This vocabulary stores the bare minimum functions

3.6 Vectored I/O handling
3.6.1 Introduction

The standard console Forth 1/O words (KEY?, KEY, EMIT, TYPE and CR) can be used with any
I/O device by placing the address of a table of xts in the USER variables IPVEC and OPVEC.
IPVEC (input vector) controls the actions of KEY? and KEY, and OPVEC(output vector) controls
the actions of EMIT, TYPE and CR. Adding a new device is matter of writing the five primitives,
building the table, and storing the address of the table in the pointers IPVEC and OPVEC to make
the new device active. Any initialisation must be performed before the device is made active.

Note that for the output words (EMIT, TYPE and CR) the USER variable OUT is handled in the
kernel before the funtion in the table is called.

3.6.2 Building a vector table

The example below is taken from an ARM implementation.

-
create Consolel \ -- addr
> serkeyli , \ -- char
> serkey?1i , \ -- flag
> seremitl , \ char --
> sertypel , \ c-addr len --
> serCR1 , \ —-
Consolel opvec ! Consolel ipvec !
N

3.6.3 Generic I/O words

: KEY? \ -- flag ; check receive char
Return true if a character is available at the current input device.

: KEY \ -- char ; receive char

22 MPE Forth for TinitARM

Wait until the current input device receives a character and return it.

: EMIT \ -- char ; display char
Display char on the current I/O device. OUT is incremented before executing the vector function.

: TYPE \ caddr len -- ; display string
Display /write the string on the current output device. Len is added to OUT before executing the
vector function.

: CR \ -- ; display new line
Perform the equivalent of a CR/LF pair on the current output device. OUT is zeroed. before
executing the vector function.

: TYPEC \ caddr len -- ; display string

Display /write the string from CODE space on the current output device. Len is added to OUT
before executing the vector function. N.B. Harvard targets only. In non-Harvard targets, this
is a synonym for TYPE.

: SPACE \ -
Output a blank space (ASCII 32) character.
: SPACES \'n--

Output 'n’ spaces, where 'n’ > 0. If 'n’ < 0, no action is taken.

: FlushKeys \ -
Compiled for 32 bit systems to flush any pending input that might be returned by KEY.

: iodev] \ ipdev opdev --
Set the input and output devices.

[iodev \ newip newop -- oldip oldop
Set new i/o devices, returning the previous input and output devices.

: SetConsole \ device --
Sets KEY and EMIT and friends to use the given device for terminal I/O. Compiled for 32 bit
systems, but is also part of LIBRARY.FTH.

3.7 String and memory operations

Some of these words may be coded for performance. If they are predefined, the high level
versions will not be compiled.

For byte-addressed CPUs (nearly all except DSPs) this kernel assumes that a character is an 8
bit byte, i.e. that:

[char = byte = address-unit j

: PLACE \ c-addrl u c-addr2 -- ; copies uncounted string to counted
Place the string c-addrl/u as a counted string at c-addr2.

: BOUNDS \ addr len -- addr+len addr
Modify the address and length parameters to provide an end-address and start-address pair
suitable for a DO ... LOOP construct.

: upc \ char -- char’ ; convert to upper case
If char is in the range ’a’ to 'z’ convert it to upper case. Note that this word is language specific
and is written to handle English only.

Chapter 3: High level kernel KERNEL62.FTH 23

: UPPER \ c-addr u --
Convert the ASCII string described to upper-case. This operation happens in place. Note that
this word is language specific and is written to handle English only.

: ERASE \ a-addr u --
Erase U bytes of memory from A-ADDR with 0.
: BLANK \ a-addr u --

Blank U bytes of memory from A-ADDR using ASCII 32 (space).

3.8 Dictionary management

: HERE \ -- addr
Return the current dictionary pointer which is the first address-unit of free space within the
system.

: ALLOT \'n--
Allocate N address-units of data space from the current value of HERE and move the pointer.

: aligned \ addr -- addr’
Given an address pointer this word will return the next ALIGNED address subject to system wide
alignment restrictions.

: ALIGN A
ALIGN dictionary pointer using the same rules as ALIGNED.
: LATEST \ -- c-addr
Return the address of the name field of the last definition.
: SMUDGE \ -
Toggle the SMUDGE bit of the latest definition.

\ x --

Place the CELL value X into the dictionary at HERE and increment the pointer.

W, \ w —-
Place the WORD value X into the dictionary at HERE and increment the pointer. This word is
not present on 16 bit implementations.

: C, \ char --
Place the CHAR value into the dictionary at HERE and increment the pointer.

: there \ -- addr
Harvard targets only: Return the DATA space pointer.

: allot-ram \'n -~
Harvard targets only: ALLOT DATA space.

i ¢, () \ b -~
Harvard targets only: The equivalent of C, for DATA space.

, (1) \'n --
Harvard targets only: The equivalent of , for DATA space.

: N>LINK \ a-addr -- a-addr’
Move a pointer from a NFA field to the Link Field.

: LINK>N \ a-addr -- a-addr’
The inverse of N>LINK.

: >LINK \ a-addr -- a-addr’

24 MPE Forth for TinitARM

Move a pointer from an XT to the link field address.
: LINK> \ a-addr -- a-addr’

The inverse of >LINK.

: >VOC-LINK \ wid -- a-addr

Step from a wordlist identifier, wid, to the address of the field containg the address of the
previously defined wordlist.

: >#THREADS \ wid -- a-addr ; for XC5 compatibility

Step from a wordlist identifier, wid, to the address of the field containg the number of threads
in the wordlist.

: >THREADS \ wid -- a-addr

Step from a wordlist identifier, wid, to the address of the array containing the top NFA for each
thread in the wordlist.

: >VOCNAME \ wid -- a-addr

Step from a wordlist identifier, wid, to the address of the field pointing to the vocabulary name
field.

: FIND \ c-addr -- c-addr O|xt 1|xt -1

Perform the SEARCH-WORDLIST operation on all wordlists within the current search order. This
definition takes a counted string rather than a c-addr/u pair. The counted string is returned as
well as the 0 on failure.

.NAME \ nfa —-

The correct way to display a definition’s name given an NFA. string for a word name, return
the address of the dictionary name thread that will contain the name.

: makeheader \ c-addr len --
Given a word name as string in addr/len form, build a dictionary header for the word.
: $CREATE \ c-addr --

Perform the action of CREATE (below) but take the name from a counted string. OBSOLETE:
replace by:

count makeheader docreate,

: CREATE \ —-

Create a new definition in the dictionary. When the new definition is executed it will return the
address of the definition BODY.

3.9 String compilation
c" \ -- c-addr

The run-time action for C" which returns the address of and steps over a counted string.
(s \ -- c-addr u

The run-time action for S" which returns the address and length of and steps over a string.
(ABORT") \ i*x x1 -- | ixx

The run time action of ABORT".
¢." \ -

The run-time action of .".

Chapter 3: High level kernel KERNEL62.FTH 25

3.10 Pre-ANS Exception handlers

Before the ANS Forth standard, these words were the primary error handlers. They are provided
for compatibility, but wherever possible, the use of CATCH and THROW will be found to be more
flexible.

: ABORT \ i*x -- ; R: j*x --
Performs -1 THROW. This is a compatibility word for earlier versions of the kernel. Unfortunately,
the earlier versions gave problems when ABORT was used in interrupt service routines or tasks.
The new definition is brutal but consistent.

: ABORT" \ Comp: "ccc<quote>" -- ; Run: i*x x1 -- | i*x ; R: j*x -—— | j*x
If x1 is non-zero at run-time, store the address of the following counted string in USER variable
> ABORTTEXT, and perform -2 THROW. The text interpreter in QUIT will (if reached) display the
text.

(Error) \ n--
The default action of ERROR. This definition has been removed from v6.2 onwards. See the
section about the changes from v6.1 to v6.2.

: 7ERROR \ flag n --
If flag is true, perform "n ERROR", otherwise do nothing. This definition has been removed
from v6.2 onwards. See the section about the changes from v6.1 to v6.2.

3.11 ANS words CATCH and THROW

CATCH and THROW form the basis of all Forth error handling. The following description of CATCH
and THROW originates with Mitch Bradley and is taken from an ANS Forth standard draft.

CATCH and THROW provide a reliable mechanism for handling exceptions, without having to prop-
agate exception flags through multiple levels of word nesting. It is similar in spirit to the "non-
local return" mechanisms of many other languages, such as C’s setjmp() and longjmp(), and
LISP’s CATCH and THROW. In the Forth context, THROW may be described as a "multi-level
EXIT", with CATCH marking a location to which a THROW may return.

Several similar Forth "multi-level EXIT" exception-handling schemes have been described and
used in past years. It is not possible to implement such a scheme using only standard words
(other than CATCH and THROW), because there is no portable way to "unwind" the return stack
to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and
ABORT", allowing an application to define, through the use of CATCH, the behavior in the event
of a system ABORT.

3.11.1 Example implementation

This sample implementation of CATCH and THROW uses the non-standard words described below.
They or their equivalents are available in many systems. Other implementation strategies,
including directly saving the value of DEPTH, are possible if such words are not available.

SP@ (— addr) returns the address corresponding to the top of data stack.

SP! (‘addr —) sets the stack pointer to addr, thus restoring the stack depth to the same
depth that existed just before addr was acquired by executing SPe.

26 MPE Forth for TinitARM

RPQ (—addr) returns the address corresponding to the top of return stack.

RP! (addr —) sets the return stack pointer to addr, thus restoring the return stack depth
to the same depth that existed just before addr was acquired by executing RP@.

-
nnn USER HANDLER O HANDLER ! \ last exception handler
: CATCH (xt -- exception# | 0) \ return addr on stack

SP@ >R (xt) \ save data stack pointer
HANDLER @ >R xt) \ and previous handler
RP@ HANDLER ! xt) \ set current handler

(
(
EXECUTE () \ execute returns if no THROW
R> HANDLER ! () \ restore previous handler
R> DROP () \ discard saved stack ptr
0 (0) \ normal completion
: THROW (777 exception# -- 777 exception#)
?DUP IF (exc#) \ O THROW is no-op
HANDLER @ RP! (exc#) \ restore prev return stack
R> HANDLER ! (exc#) \ restore prev handler
R> SWAP >R (saved-sp) \ exc# on return stack
SP! DROP R> (exc#) \ restore stack
\ Return to the caller of CATCH because return
\ stack is restored to the state that existed
\ when CATCH began execution

THEN

The ROM PowerForth implementation is similar to the one described above, but not identical.

3.11.2 Example use

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had
returned it. In that case, the stack depth is the same as it was just before CATCH began execution.
The values of the i*x stack arguments could have been modified arbitrarily during the execution
of xt. In general, nothing useful may be done with those stack items, but since their number is
known (because the stack depth is deterministic), the application may DROP them to return to
a predictable stack state.

Typical use:

Chapter 3: High level kernel KERNEL62.FTH 27

-
: could-fail \ -- char
KEY DUP [CHAR] Q =
IF 1 THROW THEN

: do-it \ab-—-c
2DROP could-fail

:otry-it \ —-
1 2 [’] do-it CATCH IF
(-- x1 x2) 2DROP ." There was an exception" CR
ELSE
." The character was " EMIT CR
THEN

: retry-it \ —-
BEGIN
1 2 [’] do-it CATCH
WHILE
(-- x1 x2) 2DROP ." Exception, keep trying" CR
REPEAT (char)
." The character was " EMIT CR

I

=

3.11.3 Gotchas

If a THROW is performed without a CATCH in place, the system will/may crash. As the current
exception frame is pointed to by the USER variable HANDLER, each task and interrupt handler
will need a CATCH if THROW is used inside it.

You can no longer use ABORT as a way of resetting the data stack and calling QUIT. ABORT is
now defined as -1 THROW.

: CATCH \ i*x xt -- j*x Oli*x n

Execute the code at XT with an exception frame protecting it. CATCH returns a 0 if no error
has occurred, otherwise it returns the throw-code passed to the last THROW.

: THROW \ k*x n —— k*x|i*x n

Throw a non-zero exception code n back to the last CATCH call. If n is 0, no action is taken
except to DROP n.

: 7throw \ flag throw-code -- ; SFP017
Perform a THROW of value throw-code if flag is non-zero, otherwise do nothing except discard flag
and throw-code.

3.12 Formatted and unformatted i/o

3.12.1 Setting number bases
: HEX \ -
Change current radix to base 16.

: DECIMAL \ -

28 MPE Forth for TinitARM

Change current radix to base 10.

: OCTAL A
Change current radix to base 8. 32 bit targets only.

: BINARY A
Change current radix to base 2.

3.12.2 Numeric output
: HOLD \ char --
Insert the ascii 'char’ value into the pictured numeric output string currently being assembled.

: SIGN \'n-—-
Insert the ascii 'minus’ symbol into the numeric output string if 'n’ is negative.

T # \ udl -- ud2

Given a double number on the stack this will add the next digit to the pictured numeric out-
put buffer and return the next double number to work with. PLEASE NOTE THAT THE
NUMERIC OP STRING IS BUILT FROM RIGHT (Isd) to LEFT (msd).

: #S \ udl -- ud2

Keep performing # until all digits are generated.

: <# \ —-

Begin definition of a new numeric output string buffer.

D #> \ xd -- c-addr u

Terminate defnition of a numeric output string. Returns address and length of the ascii result.

: —-TRAILING \ c-addr ul -- c-addr u2
Modify a string address/length pair to ignore any trailing spaces.

: D.R \dn --
Output the double number ’d’ using current radix, right justified to 'n’ characters. Padding is
inserted using spaces on the left side.

: D. \ d--
Output the double number 'd” without padding.
\'n --

Output the cell signed value 'n’ without justification.
: U. \u--

As with . but treat as unsigned.

: U.R \un -—-

As with D.R but uses a single-unsigned cell value.

.R \ nl n2 --
As with D.R but uses a single-signed cell value.

3.12.3 Numeric input
: SKIP-SIGN \ addrl lenl -- addr2 len2 t/f ; true if sign=negative

7’

Inspect the first character of the string, if it is a '+ or character, step over the string.
Returning true if the character was a ’-’, otherwise return false.

: +DIGIT \ d1 n -- d2 ; accumulates digit into double accumulator
Multiply d1 by the current radix and add n to it.

Chapter 3: High level kernel KERNEL62.FTH 29

: +CHAR \ char -- flag ; true if ok

This routine handles non-numeric characters, returning true for valid characters. By default,
the only acceptable non-numeric character is the double-number separator ’,’.

: +ASCII-DIGIT \ dl char -- d2 flag ; true=ok

Accumulate the double number d1 with the conversion of char, returning true if the character
is a valid digit or part of an integer.

(INTEGER?) \ c-addr u -- d/n/- 2/1/0
The guts of INTEGER? but without the base override handling. See INTEGER?

: Check-Prefix \ addr len -- addr’ len’

If any BASE override prefices or suffices are used in the input string, set BASE accordingly and
return the string without the override characters.

: Integer? \ $addr -- value type | O

Attempt to convert the counted string at ’addr’ to an integer. The return result is either Zero
for failed, One for a single-cell return result (followed by that cell) or Two for a double return.
The ascii number string supplied can also contain implicit radix over-rides. A leading $ enforces
hexadecimal, a leading # enforces decimal and a leading % enforces binary. The prefix '@’ is
supported for octal numbers in 32 bit systems, for which hexadecimal numbers can also be
specified by a leading ’0x’ or a trailing 'h’.

: >NUMBER \ udl c-addrl ul -- ud2 c-addr2 u2 ; convert all until non-digits

Accumulate digits from string c-addrl/u2 into double number udl to produce ud2 until the
first non-convertible character is found. c-addr2/u2 represents the remaining string with c-
addr2 pointing the non-convertible character. The number base for conversion is defined by the
contents of USER variable BASE.

3.13 String input and output
: BS \ -- ; destructive backspace

Perform a destructive backspace by issuing ASCII characters 8, 20h, 8. If OUT is non-zero at the
start, it is decremented by one regardless of the actions of the device driver.

: 7BS \ pos -- pos’ step ; perform BS if pos non-zero
If pos is non-zero and ECHOING is set, perform BS and return the size of the step, 0 or -1.

: SAVE-CH \ char addr -- ; save as required
Save char at addr, and output the character if ECHOING is set.

L \ "ccc<quote>" --
Output the text upto the closing double-quotes character. Use . (<text>) when interpreting.

. $. \ c-addr -- ; display counted string

Output a counted-string to the output device. Note that on Harvard targets (e.g. 8051) c-addr
is in DATA space.

: ACCEPT \ c-addr +nl -- +n2 ; read up to LEN chars into ADDR

Read a string of maximum size nl characters to the buffer at c-addr, returning n2 the number
of characters actually read. Input may be terminated by CR. The action may be input device
specific. If ECHOING is non-zero, characters are echoed. If XON/XOFF is non-zero, an XON
character is sent at the start and an XOFF character is sent at the the end.

3.14 Source input control
0 value SOURCE-ID \ -- n ; indicates input source

30 MPE Forth for TiniARM

Returns an indicator of which device is generating source input. See the ANS specification for
more details.

: TIB \ -- c-addr ; return address of terminal i/p buffer

Returns the address of the terminal input buffer. Note that tasks requiring user input must
initialise the USER variable >TIB. New code should use SOURCE and TO-SOURCE instead for ANS
Forth compatibility.

: TO-SOURCE \ c-addr u --
Set the address and length of the system terminal input buffer. These are held in the user
variables TIB and #TIB.

: SOURCE \ -- c-addr u
Returns the address and length of the current terminal input buffer.

: SAVE-INPUT \ - xn..x1ln
Save all the details of the input source onto the data stack. will do the job. If you want to move
the data to the return stack, N>R and NR> are available in some 32 bit implementations.

: RESTORE-INPUT \ xn..x1 n -- flag

Attempt to restore input specification from the data stack. If the stack picture between
SAVE-INPUT and RESTORE-INPUT is not balanced, a non-zero is returned in place of N. On
success a 0 is returned.

: QUERY \ —— ; fetch line into TIB
Reset the input source specification to the console and accept a line of text into the input buffer.

: REFILL \ -- flag ; refill input source

Attempt to refill the terminal input buffer from the current source. This may be a file or the
console. An attempt to refill when the input source is a string will fail. The return result is a
flag indicating success with TRUE and failure with FALSE. A failure to refill when the input
source is a text file indicates the end of file condition.

3.15 Text scanning

: PARSE \ char "ccc<char>" -- c-addr u

Parse the next token from the terminal input buffer using <char> as the delimiter. The next
token is returned as a c-addr/u string description. Note that PARSE does not skip leading
delimiters. If you need to skip leading delimiters, use PARSE-WORD instead.

: PARSE-WORD \ char -- c-addr u ; find token, skip leading chars

An alternative to WORD below. The return is a c-addr/u pair rather than a counted string and
no copy has occured, i.e. the contents of HERE are unaffected. Because no intermediate global
buffers are used PARSE-WORD is more reliable than WORD for text scanning in multi-threaded
applications.

: WORD \ char "<chars>ccc<char>" -- c-addr
Similar behaviour to the ANS word PARSE but the returned string is described as a counted
string.

3.16 Miscellaneous
. HALT? \ -- flag
Used in listed displays. This word will check the keyboard for a 'pause’ key <space>, if the key

is pressed it will then wait for a continue key or an abort key. The return flag is TRUE if abort
is requested. Line Feed (LF, ASCII 10) characters are ignored.

: origin- \ addr -- addr’

Chapter 3: High level kernel KERNEL62.FTH 31

If addr is non-zero, subtract the start address of the first defined CDATA section. This word is
only compiled if the start address of the first defined CDATA section is non-zero.

: origin+ \ addr -- addr’ ; denormalise NFA again

If addr is non-zero, add the start address of the first defined CDATA section. This word is only
compiled if the start address of the first defined CDATA section is non-zero.

: nfa-buff \ -- addr+len addr ; make a buffer for holding NFAs
Form a temporary buffer for holding NFAs. A factor for WORDS.

: MAX-NFA \ -- addr c-addr ; returns addr and top nfa
Return the thread address and NFA of the highest word in the NFA buffer. A factor for WORDS.

: COPY-THREADS \ addr --

Copy the threads of the CONTEXT wordlist to a temporary NFA buffer for manipulation. A factor
for WORDS.

: WORDS \ -
Display the names of all definitions in the wordlist at the top of the search-order.

: MOVE \ addrl addr2 u -- ; intelligent move

An intelligent memory move, chooses between CMOVE and CMOVE> at runtime to avoid memory
overlap problems. Note that as ROM PowerForth characters are 8 bit, there is an implicit
connection between a byte and a character.

: DEPTH \ -- +n
Return the number of items on the data stack, excluding the count.

: UNUSED \ -— u ; free dictionary space
Return the number of bytes free in the dictionary.

.FREE \ -
Return the free dictionary space.

3.17 Wordlist control
: WORDLIST \ -- wid
Create a new wordlist and return a unique identifier for it.

: VOCABULARY \ -- ; VOCABULARY <name>
Create a VOCABULARY which is implemented as a named wordlist.
: FORTH \ --

Install FORTH wordlist into search-order.

: FORTH-WORDLIST \ -- wid
Return the unique WID for the main FORTH wordlist.

: GET-CURRENT \ -- wid
Return the WID for the Wordlist which holds any definitions made at this point.

: SET-CURRENT \ wid --
Change the wordlist which will hold future definitions.

: GET-ORDER \ -- widn...widl n

Return the list of WIDs which make up the current search-order. The last value returned on
top-of-stack is the number of WIDs returned.

: SET-0RDER \ widn...widl n -- ; unless n = -1

32 MPE Forth for TinitARM

Set the new search-order. N is the number of WIDs to place in the search-order. If N is -1 then
the minimum search order is inserted.

: ONLY \ --
Set the minimum search order as the current search-order.

: ALSO \ -
Duplicate the first WID in the search order.

: PREVIOUS \ -
Drop the current top of search-order.

: DEFINITIONS \ --
Set the current top WID of search-order as the current definitions wordlist.

3.18 Control structures

: 7PAIRS \ x1 x2 —-

If x1<>x2, issue and error. Used for on-target compile-time error checking.
1CSP \ x —--

Save the stack pointer in CSP. Used for on-target compile-time error checking.

: 7?CSP \ -

Issue an error if the stack pointer is not the same as the value previously stored in CSP. Used
for on-target compile-time error checking.

: 7COMP \ -

Error if not in compile state.

: 7EXEC \ --

Error if not interpreting.

: DO \ C: -- do-sys ; Run: nl|ul n2|u2 -- ; R: -- loop-sys
Begin a DO ... LOOP construct. Takes the end-value and start-value from the data-stack.
: 7D0 \ C: -- do-sys ; Run: nllul n2|u2 -- ; R: -- | loop-sys

Compile a DO which will only begin loop execution if the loop parameters are not the same.
Thus 0 0 ?D0 ... LOOP will not execute the contents of the loop.

: LOOP \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
The closing statement of a DO. .LOOP construct. Increments the index and terminates when the
index crosses the limit.
: +L00P \ C: do-sys -- ; Run: n -- ; R: loop-sysl -- | loop-sys2
As with LOOP except that you specify the increment on the data-stack.
: BEGIN \ C: -— dest ; Run: —-
Mark the start of a structure of the form:
BEGIN. . [while]..UNTIL / AGAIN / [REPEAT]

: AGAIN \ C: dest -- ; Run: --
The end of a BEGIN. .AGAIN construct which specifies an infinite loop.)

: UNTIL \ C: dest —— ; Run: x —-
Compile code into definition which will jump back to the matching BEGIN if the supplied condi-
tion flag is Zero/FALSE.

: WHILE \ C: dest -- orig dest ; Run: x --
Separate the condition test from the loop code in a BEGIN. .WHILE. .REPEAT block.

Chapter 3: High level kernel KERNEL62.FTH 33

: REPEAT \ C: orig dest -- ; Run: --

Loop back to the conditional dest code in a BEGIN. .WHILE. .REPEAT construct.)

: IF \ C: -- orig ; Run: x --

Mark the start of an IF..[ELSE]..THEN conditional block.

: THEN \ C: orig -- ; Run: --

Mark the end of an IF..THEN or IF..ELSE..THEN conditional construct.

: endif \ C: orig -- ; Ru: -- ; synonym for THEN

An alias for THEN. Note that ANS Forth describes THEN not ENDIF.

: AHEAD \ C: -- orig ; Run: --

Start an unconditional forward branch which will be resolved later.

: ELSE \ C: origl -- orig2 ; Run: --

Begin the failure condition code for an IF.

: CASE \ C: -- case-sys ; Run: --

Begin a CASE. .ENDCASE construct. Similar to C’s switch.

: OF \ C: -- of-sys ; Run: x1 x2 -- | x1

Begin conditional block for CASE, executed when the switch value is equal to the X2 value placed
in TOS.

: ENDOF \ C: case-sysl of-sys -- case-sys2 ; Run: --

Mark the end of an OF conditional block within a CASE construct. Compile a jump past the
ENDCASE marker at the end of the construct.

: ENDCASE \ C: case-sys -- ; Run: x --

Terminate a CASE. .ENDCASE construct. DROPs the switch value from the stack.

: 70F \ C: -- of-sys ; Run: flag --

Begln conditional block for CASE, executed when the flag is true.

: END-CASE \ C: case-sys -- ; Run: --

A Version of ENDCASE which does not drop the switch value. Used when the switch value itself
is consumed by a DEFAULT condition.

: NEXTCASE \ C: case-sys -- ; Run: x —--
Terminate a CASE. .NEXTCASE construct. DROPs the switch value from the stack and compiles a
branch back to the top of the loop at CASE.

: RECURSE \ Comp: --
Compile a recursive call to the colon definition containing RECURSE itself. Do not use RECURSE
between DOES> and ;. Used in the form:

: foo ... recurse ... ;

to compile a reference to FOO from inside FOO.

3.19 Target interpreter and compiler
: ?STACK \ --
Error if stack pointer out of range.

: ?UNDEF \ x —-
Word not defined error if x=0.

(compile) \ -- ; compiles in line xt

34 MPE Forth for TinitARM

The run-time action for COMPILE and friends.

: POSTPONE \ Comp: "<spaces>name" --
Compile a reference to another word. POSTPONE can handle compilation of IMMEDIATE words
which would otherwise be executed during compilation.

: S \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
Describe a string. Text is taken upto the next double-quote character. The address and length
of the string are returned.

: Cc" \ Comp: "ccc<quote>" -- ; Run: -- c-addr
As S" except the address of a counted string is returned.

: #LITERAL \'nl nnn -- ; put in dictionary nl first
Compile nl..nn as literals so that the same stack order results when the code executes.

: LITERAL \ Comp: x -- ; Run: -- x
Compile a literal into the current definition. Usually used in theform [<expression] LITERAL
inside a colon definition. Note that LITERAL is IMMEDIATE.

: 2LITERAL \ Comp: x1 x2 -- ; Run: -- x1 x2
A two cell version of LITERAL.

: CHAR \ "<spaces>name" -- char

Return the first character of the next token in the input stream. Usually used to avoid magic
numbers in the source code.

[CHAR] \ Comp: "<spaces>name" -- ; Run: -- char
Compile the first character of the next token in the input stream as a literal. Usually used to
avoid magic numbers in the source code.

: sliteral \ c-addr u -- ; Run: -- c-addr2 u ; 17.6.1.2212

Compile the string c-addrl/u into the dictionary so that at run time the identical string c-
addr2/u is returned. Note that because of the use of dynamic strings at compile time the
address c-addr2 is unlikely to be the same as c-addrl.

[\ --
Switch compiler into interpreter state.
] \ -

Switch compiler into compilation state.

: IMMEDIATE \ -

Mark the last defined word as IMMEDIATE. Immediate words will execute whenever encountered
regardless of STATE.

2 \ "<spaces>name" -- xt
Find the xt of the next word in the input stream. An error occurs if the xt cannot be found.

(] \ Comp: "<spaces>name" -- ; Run: -- xt

Find the xt of the next word in the input stream, and compile it as a literal. An error occurs if
the xt cannot be found.

[COMPILE] \ "<spaces>name" --

Compile the next word in the input stream. [COMPILE] ignores the IMMEDIATE state of the word.
Its operation is mostly superceded by POSTPONE.

(\ "ccc<paren>" --
Begin an inline comment. All text upto the closing bracket is ignored.

Chapter 3: High level kernel KERNEL62.FTH 35

N\ \ "ccc<eol>" --
Begin a single-line comment. All text up to the end of the line is ignored.

H, \ "CCC<qu0te>" —_

Parse text up to the closing quote and compile into the dictionary at HERE as a counted string.
The end of the string is aligned.

- (\ "cc<paren>" --

A documenting comment. Behaves in the same manner as (except that the enclosed text is
written to the console at compile time.

: ASSIGN \ "<spaces>name" --

A state smart word to get the XT of a word. The source word is parsed from the input stream.
Used as part of an ASSIGN xxx TO-DO yyy construct.

(T0-DO) \ —— ; R: xt —— a—addr’
The run-time action of TO-DO. It is followed by the data addres of the DEFERred word at which
the xt is stored.

: TO-DO \ "<spaces>name" --
The second part of the ASSIGN xxx T0-DO yyy construct. This word will assign the given XT to
be the action of a DEFERed word which is named in the input stream.
¢ exit \ R: nest-sys -- ; exit current definition
Compile code into the current definition to cause a definition to terminate. This is the Forth
equivalent to inserting an RTS/RET instruction in the middle of an assembler subroutine.
; \ C: colon-sys -- ; Run: -- ; R: nest-sys --
Complete the definition of a new ’colon” word or :NONAME code block.

: INTERPRET \ -
Process the current input line as if it is text entered at the keyboard.

: N>R \xn .. x1 N--; R: =——x1 .. xnn
Transfer N items and count to the return stack.

: NR> \-——-xn .. x1 N ; R: x1 .. xn N —-
Pull N items and count off the return stack.

: EVALUATE \ i*x c-addr u -- j*x ; interpret the string
Process the supplied string as though it had been entered via the interpreter.

.throw \ throw# --
Display the throw code. Values of 0 and -1 are ignored.
: QUIT \ —— ; R: ixx —-
Empty the return stack, store 0 in SOURCE-ID, and enter interpretation state. QUIT repeatedly

ACCEPTSs a line of input and INTERPRETSs it, with a prompt if interpreting and ECHOING is on.
Note that any task that uses QUIT must initialise >TIB, BASE, IPVEC, and OPVEC.

3.20 Compilation and Caches

Because some CPUs, e.g. XScale and ARM9s, have separate instruction and data caches, self-
modifying code can cause problems when code is laid down (into the Dcache) and then an
attempt is made to execute it (the Icache will not necessarily contain the code). For this reason
a word is provided that will synchronise the caches for an address range. This word is CPU
specific and may reference code in a CPU and/or hardware specific file.

36 MPE Forth for TiniARM

Synchronisation will usually only be necessary when creating words, constants, variables etc.
interactively on the target and then executing them before the code has got into the Icache.
Only executable code has to be synchronised, not data.

If the word FLUSHCACHE (--) is provided before KERNEL62.FTH is compiled, it will be ex-
ecuted by the text interpreter before each line is processed. FLUSHCACHE is also executed by

[
.

3.21 Startup code
3.21.1 Cold chain

If enabled by the non-zero equate COLDCHAIN? the cold start code in COLD will walk a list and
execute the xts contained in it. The xts must have no stack effect (——) and are added to the
list by the phrase:

? <wordname> AtCold

The list is executed in the order in which it was defined so that the last word added is executed
last. This was done for compatibility with VFX Forth, which also contains a shutdown chain,
in which the last word added is executed first.

If the equate COLDCHAIN? is not defined in the control file, a default value of 0 will be defined.

1: ColdChainFirst \ -- addr
Dummy first entry in ColdChain.

variable ColdChain \ -- addr
Holds the address of the last entry in the cold chain.

: AtCold \ xt --

Specifiy a new XT to execute when COLD is run. Note that the last word added is executed last.
ATCOLD can be executed interpretively during cross-compilation. The cold chain is built in the
current CDATA section.

: WalkColdChain \ —- MPE.0000
Execute all words added to the cold chain. Note that the first word added is executed first.

3.21.2 The COLD sequence

At power up, the target executes COLD or the word specified by MAKE-TURNKEY <name>.

(INIT) \ --
Performs the high level Forth startup. See the source code for more details.
: COLD \ -

The first high level word executed by default. This word is set to be the word executed at power
up, but this may be overridden by a later use of MAKE-TURNKEY <name>. See the source code for
more details of COLD.

3.22 Kernel error codes

-1 ABORT
-2 ABORT™

Chapter 3: High level kernel KERNEL62.FTH 37

-4 Stack underflow

-13 Undefined word.

-14 Attempt to interpret a compile only definition.

-22 Control structure mismatch - unbalanced control structure.

-121 Attempt to remove with MARKER or FORGET below FENCE in protected dic-
tionary.

-403 Attempt to compile an interpret only definition.

-501 Error if not LOADing from a block.

3.23 Differences between the v6.1 and 6.2 kernels
3.23.1 Error handling
All error handling in the v6.2 kernel is defined in terms of CATCH and THROW. The earlier words

ERROR and 7ERROR have been removed. If you need them, define them as synonyms for THROW
and ?THROW.

The definition of ABORT has changed significantly. The old version was:

-
: ABORT \ i*x -- ; R: j*x --

\ *G Empty the data stack and perform the action of QUIT, which includes
\ ** emptying the return stack, without displaying a message.

xon/xoff off echoing on \ No Xon/Xoff, do Echo
sO @ sp! \ reset data stack
quit \ start text interpreter

The new version is:

-
: ABORT \ ixx -- ; R: j*x -

*G Performs "-1 THROW". This is a compatibility word for earlier
**% versions of the kernel. Unfortunately, the earlier versions

** gave problems when ABORT was used in interrupt service routines
**x or tasks. The new definition is brutal but consistent.

-1 Throw

~

The old version worked 99% of the time, except that in tasks or interrupt service routines, the
result was unpredictable. Because modern applications are larger and more complex, ABORT has
to be completely predictable. The line

xon/xoff off echoing on \ No Xon/Xoff, do Echo

is now part of QUIT. The phrase SO @ SP! must now be provided by the THROW handler.

The previous definition of THROW checked for a previously defined CATCH and performed the old
ABORT if no CATCH had been defined. The new version assumes that a CATCH has been defined

38 MPE Forth for TiniARM

and may/will crash if no CATCH has been performed. The result is a faster and smaller definition
of CATCH. However, it is now the programmer’s responsibility to provide a CATCH handler for
ALL ISRs and tasks that may generate a THROW. This is actually very little different from the
previous situation, except that the system is less forgiving if you forget to provide a handler.

Error codes have been made ANS compliant. It is MPE policy that all error and ior (i/o result)
codes shall be distinct from now on.

3.23.2 Terminal input buffer and ACCEPT.

The changes below simplifiy the source code, and permit multiple tasks to use EVALUATE without
interaction. Note that compilation from multiple sources/tasks requires the interpreter/compiler
to be interlocked with a semaphore.

The 2VARIABLE SOURCE-STRING has been removed, and TO-SOURCE and SOURCE use ’TIB and
#TIB instead.

The state variables ECHOING and XON/XOFF are now USER variables. In most cases this will have
no impact. However, tasks may now control these variables independently.

QUIT always enforces ECHOING on and disables XON/XOFF processing. QUIT does not select an
I/0 device. This change was made to allow the interpreter to be used on any channel in systems
with several serial lines or with the Telnet service of the PowerNet TCP/IP stack. Note that
any task that uses QUIT must initialise IPVEC, OPVEC, ECHOING and XON/XOFF.

Removed: 7EMIT and SOURCE-STRING.

Chapter 4: Target VALUE and local variables 39

4 Target VALUE and local variables

The file COMMON\METHODS.FTH implements the compilation of VALUEs and the ANS
Forth LOCALS| syntax for compilation on the target. Compilation of this file requires CPU
dependent support, usually called LOCAL.FTH in the %CpuDir% directory, and MPE standard
control files will compile these files if the equate TARGET-LOCALS? is set non-zero in the
control file.

Note that this file is only provided for full ANS compliance. The MPE extended local variable
syntax is provided by the cross compiler, and is much more powerful and more readable.

Note also that compilation of %CpuDir%\LOCAL.FTH may be required if you cross compile
words with more than four input arguments.

: OPERATOR \ n -- ; define an operator in the cross compiler
An interpreter definition that build new operators such as "to" and "addr".

: VALUE \n--; -— n ; n VALUE <name>

Creates a variable of initial value n that returns its contents when referenced. To store to a
child of VALUE use "n to <child>".

(LOCAL) \ Comp: c-addr u -- ; Exec: -- x ; define local var

When executed during compilation, defines a local variable whose name is given by c-addr/u.
If u is zero, c-addr is ignored and compilation of local variables is assumed to finish. When
the word containing the local variable executes, the local variable is initialised from the stack.
When the local variable executes, its value is returned. The local variable may be written to
by preceding its name with TO. This word is provided for the construction of user-defined local
variable notations. This word is only provided for ANS compatibility, and locals created by it
cannot be optimised by the VFX code generator.

: LOCALS| \ "name...name |" --

Create named local variables <namel> to <namen>. At run time the stack effect is (xn..x1 —
), such that <namel> is initialised with x1 and <namen> is initialised with xn. Note that this
means that the order of declaration is the reverse of the order used in stack comments! When
referenced, a local variable returns its value. To write to a local, precede its name with TO.

In the example below, a and b are named inputs.

-
: foo \ab --
locals| b a |
ab+ cr.
ab*x cr .

40

MPE Forth for TinitARM

Chapter 5: Development tools 41

5 Development tools

The file COMMON\DEVTOOLS.FTH supplies words that are most used during development
and debugging.

1 equ simple? \ -- n
Set this flag non-zero to generate .xWORD to avoid divisions. On some CPUs, a division
operation is slow.

.nibble \'n --
Convert a nibble to a hex ASCII digit and display it.

.BYTE \ b —-
Display b as two hex digits.

.WORD \ w -~
Display w as four hex digits.

.LWORD \ x —-
Display x as eight hex digits. The separator ":" makes the output easier to read. Future releases
of MPE Forths will treat the ":" character as having no effect on number input parsing. This
character is chosen because it does not conflict with the current use of the "." and "," characters
for numbers. This word is only compiled for 32 bit targets.

.DWORD \ x —-
A synonym for .LWORD.
.ASCII \ char --

The top bit of char is zeroed. If char is in the range 32..126 it is displayed, otherwise a "." is
displayed.

: DUMP \ addr len --

Display (dump) len bytes of memory starting at addr.

: LDUMP \ addr len -- ; dump 32 bit long words

Display (dump) len bytes of memory starting at addr as 32 bit words.

: WDUMP \ addr len -- ; dump 16 bit half words

Display (dump) len bytes of memory starting at addr as 16 bit half-words.
.S \ --

Display the contents of the data stack without affecting it.

i 7 \ a-addr --
Display contents of a memory location as a cell.

42

MPE Forth for TinitARM

Chapter 6: Debugging tools 43

6 Debugging tools

(A
Copyright (c) 1996-2004

MicroProcessor Engineering

133 Hill Lane

Southampton S015 5AF

England

tel: +44 (0)23 8063 1441
fax: +44 (0)23 8033 9691
net: mpe@mpeforth.com
tech-support@mpeforth.com

web: www.mpeforth.com
(N J

The file Common\ DebugTools.fth provides debugging tools for MPE embedded systems created
by Forth 6 Cross Compilers. The emphasis is on 32 bit systems and interactive testing. The tools
can easily be ported to other systems. Copyright is retained by MPE. The code may be freely
used on non-MPE systems for non-commercial use. The copyright notice must be preserved.

Porting the code to other systems is up to you. This code may require some carnal knowledge
of how your system works. Most Forths contain the required words, but they may not have the
same names that MPE use.

6.1 Implementation dependencies

In MPE embedded systems, the USER variables IPVEC and OPVEC contain the address of the device
structure used for input and output by KEY, EMIT and friends. In VFX Forth for Windows/Linux,
the variables are IP-HANDLE and OP-HANDLE.

: consolelO \ —-
Select debug console for output. By default this is the CONSOLE device.
console dup opvec ! ipvec !

Echoing on Xon/Xoff off

! name? \ addr -- flag MPE. 0000

Check to see if the supplied address is a valid NFA, returning true if the address appears to be
a valid NFA. This word is implementation dependent. For MPE cross compilers, a valid NFA
for MPE embedded systems satisfies the following:

e All characters within string are printable ASCII within range 33..126

e String Length is non-zero in range 1..31 and bit 7 is set, ignore bits 6, 5

count \ c-addr u --
dup $9F and $81 $9F within? O= \ NFA first byte = 1SIxxxxx, count = XXXXX
\ mask = 10011111

if 2drop O exit then

$01F and bounds ?do
i c@ #33 #126 within? 0= \ check all ascii chars
if unloop FALSE exit then

44 MPE Forth for TiniARM

loop
TRUE

: ip>nfa \ addr -- nfa
Attempt to move backwards from an address within a definition to the relevant NFA.
2- \ NFA must be at least ’n’ bytes backwards
begin
dup name? O=
while
1_
repeat

: >name \ xt -- nfa
Move from a word’s xt to its name field. If >NAME does not exist IP>NFA will be used.

ip>nfa

.name \ nfa --
Given a word’s NFA display its name.

count $1F and type

.DWORD \ dw --
Display the 32 bit long word ’dw’ as an 8 digit hex number.

base @ hex swap
O <# # # # # ascii : hold # # # # #> type
base !

6.2 Miscellaneous

MPE systems use TICKS (—- ms) to return a running time count in milliseconds. Windows
systems can use the GetTickCount API call.

: times \ n -— ; n TIMES <word>
Execute <word> n times, and display the execution time. The ticker interrupt must be running.
ticks ’ rot O \ -- ticks xt n O
?do dup execute loop
drop
ticks swap - . ." ms"

.ColdChain \ —-

Display all words added to the cold chain. Note that the first word added is displayed first. In
VFEX Forth this word is called ShowColdChain.

Chapter 6: Debugging tools 45

cr ColdChainFirst
begin
dup
while
dup cell + @ >name .name \ execute XT
Q \ get next entry
repeat
drop

.decimal \'n --

Display a value as a decimal number.

base @ >r decimal . 1> base !

.hex \'n-—-

Display a value as a hexadecimal number.

base @ >r hex u. 1r> base !

[con \ == ; R: -- consys

Saves BASE and the current i/o vectors on the return stack, and then switches to the console
and DECIMAL.

r>

base @ >r opvec @ >r ipvec @ >r
ConsolelIO0 decimal

>r

con] \ -- ; R: consys --
Restores BASE and the current i/o vectors from the return stack.

r>
r> ipvec ! 1> opvec ! r> base !
>r

: CheckFailed \ ip caddr len --

Given the address at the fault occurred and a string, ouput the string and some diagnostic
information.

[con
cr type ." failed at "
dup .dword ." in " ip>nfa .name

con]

46 MPE Forth for TinitARM

6.3 Stack checking

Especially in multi-tasked systems, stack errors can be fatal. Detecting them as early as possible
reduces debugging time. These words rely on Forth return stack cells containing return addresses.
This is true on the vast majority of Forth systems except for some 8051 and real-mode 80x86
systems. If you find others, please let us know.

: 7?StackDepth \ +n --
If the stack depth before +n is not n, issue a console warning message and clear the stack. Note
that this word is implementation dependent.

dup 2+ depth =

if drop exit endif \ no failure

[con

cr ." **x Stack fault: depth = " depth 1- 0 .r ." (d) "
[tasking?] [if]

." in task " self .task \ indicate current task
[then]

> s0 @ sp! r> 0 ?do O 1loop \ set required depth

cr ." Stack updated."

con]

: ?StackEmpty \ --
If the stack depth is non-zero, issue a console warning message and clear the stack.

0 7?StackDepth

: TaskChecks \ —-
Use in task to check for creeping stacks and so on. This word can be extended to provide
additional internal consistency checks.

?StackEmpty

: SF{ \'n -- ; R: —- depth

n SF{ }SF will check for stack faults. n describes the stack change between SF{ and }SF.
If the stack change is different, an error message is generated. This word will work on most
systems in which the return address is held on the return stack.

r> swap depth 2- + >r >r

: }SF \ == ; R: depth -- ; perform stack check

The end of an SF{ ... }SF structure. This word is not strictly portable as it assumes that the
Forth return stack holds a valid return address. In the vast majority of cases the assumption is
true, but beware of some 8051 implementations. See SF{

r>
r> depth 2- <> if
dup s" Stack check" CheckFailed
endif
>r

Chapter 6: Debugging tools 47

6.4 Assertions

Assertions are a useful way to check that the system is behaving correctly. When the phrase:
[ASSERT <test> ASSERT]

is compiled into a piece of code, the test is performed and generates an error report if the result
is false. If you do not want the performance overhead of the test, set the value ASSERTS? to
zero. To remove even the small overhead of of testing ASSERTS?, comment out the line.

-1 value assert? \ - n
Returns non-zero if asserts will be tested.

(assert) \ flag --
If flag is zero, report an ASSERT error.

if exit endif \ faster on some CPUs
r@ s" ASSERT" CheckFailed

[assert \ -
Compile the code to start an assert.

?comp \ must be compiling
postpone assert? postpone if

; immediate

: assert] \ -

Compile the code to end an assert.

?comp \ must be compiling
postpone (assert) postpone then
; immediate

Here is a simple assert that will fail if BASE is not DECIMAL.

: foo \ ——
[assert base @ #10 = assert]

48

MPE Forth for TinitARM

Chapter 7: Interrupt handlers 49

7 Interrupt handlers

The file ARM\INTARMS3.FTH contains generic ARM interrupt handlers in the v6.2 style, plus
alternative handlers for CPUs with vectored interrupt controllers. INTARM3.FTH requires
ARM\ARMDEF.FTH to be compiled before the SFRxxxx file for your particular CPU. The file
ARM/STACKDEF.FTH provides default main task and stack layouts and should be compiled
from the control file or copied into your control file. Default stack initialisation code is pro-
vided by the assembler routine INITSTACKS in ARM\INITSTACKS.FTH. This routine can
be referenced from your initialisation code.

You are strongly recommended to use INTARMS3 for new code. The INTARMS3.FTH inter-
rupt handlers are much more paranoid (and hence safer) than previous releases. The default
diagnostic code gives much more information when an abort occurs. The files INTARM.FTH,
INTARM2.FTH, INTS3C4510.FTH and INTAT91.FTH remain in the distribution but will not
be supported in future releases.

Separate sections are provided for CPUs with vectored interrupt controllers, e.g. AT91 and
Samsung, and these may have a different word set for initialising interrupts. Be careful with
these to distinguish between Forth words (denoted by XTs) and the interrupt service routines
(denoted by ISRs) that despatch the Forth words.

Each exception (interrupt) type requires a predefined stack frame on which the interrupt handler
builds the Forth stacks and USER area. The system initialisation code must preset the banked
R13 registers to the top of the frames. This code requires the Forth return stack pointer to be
R13.

The TRQ handlers all share a common "stack of stacks". On entry to the interrupt han-
dler, Forth system registers are allocated. Your initialisation code MUST set up RI13
for each CPU mode. See ARM\CONFIGS\LPC2106U.CTL (contains stack layout) and
ARM\HARDWARE\INITLPC210X.FTH (contains initialisation code) for examples.

In order to support exception nesting the equate #IRQs in the control file must be set to
the maximum number of nestings required for ALL modes. When #IRQs is greater than 1
(to indicate IRQ nesting), the exception handler entry and exit code is extended to handle
all exceptions in SVC mode. This avoids corruption of R14 (the LINK register) when nesting
occurs. The equate #IRQs is used to calculate the size and layout of the IRQ and SVC mode
stacks along with the equates #SWIs and #FIQs in the control file.

Note that each interrupt has its own USER area, but that NO USER VARIABLES ARE INI-
TIALISED except for SO and RO in SWI handlers.

Note that it is assumed that the banked stack pointers have already been set up by the hardware
initialisation code.

Note that it is implicit throughout the code that the three system registers UP, PSP, RSP are
always set so that:

UP > PSP > RSP

Because of this layout, data stack underflows may corrupt the first part of the USER area. You

50 MPE Forth for TiniARM

have been warned. During testing, it may be as well to set the equate SP-GUARD to 2 or 3 in
your control file to leave a few guard cells on the data stack.

7.1 Configuration

The following equates define values used for the equate ARM-VIC? that controls how IRQ and
FIQ exceptions are processed. Note that if ARM-VIC? contains any other values, no IRQ or FIQ
code will be compiled, permitting you to define different versions for other CPUs in another file.
If you find and code other vectored interrupt controllers for ARMs, we will be happy to include
your code in this file in future releases.

0 equ NO-VIC \ --n

specifies that no vectored interrupt controller is present.

1 equ AT91-VIC \ -- n

specifies that the AT91 AIC vectored interrupt controller is present.

2 equ S3C-VIC \ -- n

specifies that the Samsung vectored interrupt controller as used in the S3C4510B is present.
3 equ PL190-VIC \ -- n

Specifies that the ARM PL190 vectored interrupt controller as used by the Philips LPC210x is
present.

4 equ AT91GIC-VIC \ ——n

specifies that the AT91 GIC vectored interrupt controller as used in AT91SAMxxx devices is
present.

NO-VIC equ ARM-VIC? \ --n

If the equate ARM-VIC? is undefined before this file is compiled, the generic (no vectored
controller) will be compiled for FIQ and TRQ handling.

The following equates define what code is compiled. If they are defined before INTARM3.FTH
the default values below will be overridden.

1 equ test-isr? \ -- n ; non-zero to compile test code
Non-zero to compile test and diagnostic code.
0 equ SimpleAborts? \ --n

If this equate is non-zero, simple DAbort, PAbort, and Undef handlers are installed. The simple
high level action receives only a pointer to the instruction that caused the abort and issues a
simple message. If this equate is zero, a more complex DAbort handler is installed. The complex
high level action receives a pointer to a status frame and a pointer to the instruction that caused
the abort. The complex handlers are compiled if TEST-ISR? is nonzero. They perform a register
dump and a return stack trace. The additional code space required for complex handlers is
about 2300 bytes.

0 equ Reserved_ISR? \ --n

When non-zero, a handler will be installed for the RESERVED exception (vector at $0000:0014).
This vector was used by the 26 bit architecture, but is now reserved for future expansion. It is
used for other purposes by some CPUs, e.g. Philips LPC2xxx.

lcall \ xt addr --
An INTERPRETER word to create a call opcode to xt at addr.

Chapter 7: Interrupt handlers 51

7.2 Interrupt management
code EFI \ -- ; enable FIQ interrupt
Global enable FIQ interrupt.

code DFI \ -- ; disable interrupts
Global disable FIQ interrupt.

code EI \ -- ; enable interrupts

Global enable IRQ.

code DI \ -- ; disable interrupts
Global disable TRQ.

code [I \ R: -- x ; preserve I/F status on return stack, disable ints
Preserve I/F status on return stack, disable IRQ. The state is restored by IJ.

code I] \ R: x -—— ; restore int. status from r. stack
Restore interrupt status saved by [I from the return stack.

code SAVE-INT \ -- x ; return interrupt status and disable interrupts

Geturn interrupt status and then disable interrupts. Use [I and I] for new code. Now in
LIBARM.FTH.

code RESTORE-INT \ x -- ; restore state returned by SAVE-INT
Restore state returned by SAVE-INT. Use [I and I] for new code. Now in LIBARM.FTH.

7.3 SWI handler

The SWI handler is only compiled if the equate #SWIs is non-zero.

The SWI handler assumes that we may already be in supervisor mode, and that the RSP must
be preserved. A new RSP stack is allocated, and the original RSP, R4..R12 and LINK are saved
on the new RSP stack. New data stack and USER area are then allocated, parameters R0..R2
and the SWI# are put on the new data stack, and the handler is executed. On return, registers
RSP and R3..12 are restored. R2 will be destroyed. Return data (if any) may be placed in RO
and R1.

By default, on entry to SWI_HANDLER, TOS contains the SWI#, and the next three items contain
RO..2. This is done so that the standard ARM SWI calls can be emulated. Although it is not
strictly necessary to remove this data, a canonical handler will have the stack effect:

SWI_ACTION \ r2 r1 r0 swi# -- r1’ r0’
defer SWI_handler \ r2 rl r0 swi# -- r1’ r0’ ; default action
The default action is 2DROP. Assign your own action to this word.

assign mySwi to-do SWI_handler

PROC SWI_exception \ -

The actual SWI handler which calls SWI_handler above. It assumes RSP=R13, R0-2 are pa-
rameters, R2 will be destroyed, Return parameters are in RO-R1, R3..R13 will be preserved

: testswi \ r2 r1 rO -- r1’ r0’ ; executes swiO

An example SWI handler.

code run-swi0 \ r2 r1 r0 -- r1 r0
Test execution of SWI 0.

52 MPE Forth for TinitARM

7.4 Support for complex abort handlers

The complex exception handlers store the ARM CPU state in a data frame. The frame is 72
bytes long (18 4 byte cells), whose format is:

-
-—— high —

ABORT mode R14/link = faulting PC+8
faulting R12

faulting R11

faulting R10

faulting RO

faulting RS8

faulting R7

faulting R6

faulting Rb5

faulting R4

faulting R3

faulting R2

faulting R1

faulting RO

faulting R14

faulting R13

faulting CPSR

ABORT mode CPSR on entry

-—= low --
N

struct /exframe \ -- n
structure defining the exception frame

.item \ addr -- addr+4
Display a cell item at addr and increment addr.

.items \ addr n -- addr+4n

Display n items at addr and increment addr.

.frame \ “frame --
Display the CPU state pointed to by the data frame.

: name? \ addr -- flag

Check to see if the supplied address is a valid NFA. This word is implementation dependent. A
valid NFA for MPE embedded systems satisfies the following:

e All characters within string are printable ASCII within range 33..126

e String Length is non-zero in range 1..31 and bit 7 is set, ignore bits 6, 5

: ip>nfa \ addr -- nfa
Attempt to move backwards from an address within a definition to the relevant NFA.

: check-aligned \ addr -- addr’
Check addr for cell alignment, report and correct if misaligned.

: 7Clip32 \ xsp xspTop -- xsp xspTop’
Clip the stack display to 32 items.

.rsframe \ "“frame --

Chapter 7: Interrupt handlers 53

Display the return stack indicated by the frame, assuming the Forth RSP=R13 and RUP=R11.

.psframe \ “frame --
Display the data stack indicated by the frame, assuming the Forth PSP=R12 and RUP=RI11.

7.5 Undefined instruction handler

7.5.1 Simple UNDEF handler
defer Undef_handler \ “ins --
The place holder for the Undefined Instruction handler has a default action of DROP.

: testundef \ “ins -- ; handle undefined instruction
Test handler for Undefined Instructions.

: run-undef \ -
Causes an Undefined Instruction exception.

7.5.2 Complex UNDEF handler

defer Undef_handler \ “frame “ins -- fixed? ; true if instruction fixed up
Given a pointer to a data frame and a pointer to the instruction, returns true if a fixup has been
performed. If the return value is non-zero, the instruction is rerun otherwise the instruction is
skipped.

: testundef \ “frame “ins -- fixed? ; handle undefined instruction
Test handler for Undefined Instructions.

: run-undef \ --
Causes an Undefined Instruction exception.

7.6 Prefetch Abort handler
7.6.1 Simple PABORT handler

defer PAbort_handler \ “ins -- fixed?
Given a pointer to an instruction, returns true if a fixup has been performed. If the return value
is non-zero, the instruction is rerun otherwise the instruction is skipped.

: testpabort \ “ins -- fixed?
Test PAbort handler.

: run-pabort \ -
Run the test PAbort handler.

: run-pabort \ -
Run the test PAbort handler.

7.6.2 Complex PAbort handler

defer PAbort_handler \ “frame “ins -- fixed? ; true if instruction fixed up
Given a pointer to a data frame and a pointer to the instruction, returns true if a fixup has been
performed. If the return value is non-zero, the instruction is rerun otherwise the instruction is
skipped.

: testPabort \ "“frame “ins -- fixed?

Test PABORT handler.

: run-Pabort $05000000 execute ; \ hardware specific
Run test PAbort handler.

54 MPE Forth for TinitARM

7.7 Data Abort handler
7.7.1 Simple DAbort handler

defer DAbort_handler \ “ins -- fixed? ; true if instruction fixed up

Given a pointer to an instruction, returns true if a fixup has been performed. If the return value
is non-zero, the instruction is rerun otherwise the instruction is skipped.

: testdabort \ “ins -- fixed?
Test DABORT handler.
: run-dabort $04000000 @ ; \ hardware specific

Run test PAbort handler.

7.7.2 Complex DAbort handler

defer DAbort_handler \ “frame “ins -- fixed? ; true if instruction fixed up
Given a pointer to a data frame and a pointer to the instruction, returns true if a fixup has been
performed. If the return value is non-zero, the instruction is rerun otherwise the instruction is
skipped. The frame format is as for the PAbort handler above.

. testdabort \ “frame “ins -- fixed?
Test DABORT handler.
: run-dabort $05000000 @ drop ; \ hardware specific

Run test DAbort handler.

7.8 Reserved (26 bit address exception) handler

This exception is only used for systems which support the 26 bit PC mode of early ARM cores.

defer Unused_handler \ “ins -- fixed?

Given a pointer to an instruction, returns true if a fixup has been performed. If the return value
is non-zero, the instruction is rerun otherwise the instruction is skipped.

PROC Unused_exception \ --
The UNUSED exception handler calls UNUSED_handler above.

: testunused \ -
Test code for the UNUSED exception.

7.9 Generic IRQ handler

The ARM architecture does not define a vectored interrupt controller, although several CPUs
provide one. If the CPU has a vectored controller, it should be used. This implementation
provides a linked list of routines to be called, each of which tests for its own interrupt and then
handles it if required. The last item in the chain is the return from IRQ routine. The variable
NEXT-IRQ points to the first ISR to execute.

Note that this routine must be modified to support nested interrupts. Because the IRQ mode
link register (R11) is set by an interrupt response, as well as by the BL instruction, if an
interrupt is accepted after a BL instruction but before R11 is saved, R11 will be corrupted. The
result of this is that nestable interrupt handlers must switch to another mode (e.g. SVC) before
re-enabling interrupts. This is handled by code in the TRQ_EXCEPTION and IRQ_RETI routines
below.

Chapter 7: Interrupt handlers 55

The required modification is performed if the EQUate #IRQs is greater than one, whereupon
TRQ nesting is supported with the penalty of greater overhead. IF IRQ nesting is required,
the IRQ stack size should be at least 64*#IRQs bytes, and TASK-SIZE*#IRQs bytes should
be added to the SWI stack. If TRQ nesting is not required the IRQ stack must be at least
TASK-SIZE bytes.

variable next-irq \ -- addr

Holds pointer to next ISR to run. ISRs are added to this chain.

PROC IRQ_exception \ -- ; IRQ entry code

The TRQ handler entry point which executes the chain. The USER variables SO and RO are
initialised.

proc IRQ_reti \ —— ; IRQ exit code

This code cleans up after the IRQ and is the first item added to the IRQ chain.

: br24, \ xt opcode --

Given an opcode (B or BL) and an execution address, compiles a branch or call to it.

: add-isr \ xt chain -- ; ’ <name> <chain_var> ADD-ISR adds name to the ISR handler 1.
An action is added to the IRQ or FIQ chain by a phrase of the form:

’ <name> <chain_var> ADD-ISR

: add-irq \ xt -—— ; ’ <name> ADD-IRQ adds name to the IRQ handler list
An action is added to the IRQ chain by a phrase of the form:

> <name> ADD-IRQ

7.10 Generic FIQ handler
Note that FIQ interrupt nesting is NOT supported by default. If it is required, use the Generic
TRQ handler as a model, and do not forget to switch back to FIQ mode rather than TRQ mode.

variable next-fiq \ -- addr
Holds pointer to next ISR to run. FIQ ISRs are added to this chain

PROC FIQ_exception \ -

FIQ entry code.

proc FIQ_reti \ -

FIQ exit code.

: add-fiq \ xt -— ; adds action to FIQ handler list

An action is added to the FIQ chain by a phrase of the form:
> <name> ADD-FIQ

7.11 AT91 IRQ and FIQ handlers

This section is not a treatise on the Atmel Advanced Interrupt Controller. These words provide
a fairly basic set of tools for using the AIC. The notes in the Generic IRQ section about interrupt
nesting apply here.

This code requires KERNEL62.FTH and the equate COLDCHAIN? must be set non-zero in the
control file.

56 MPE Forth for TiniARM

Basic clock enabling of the AIC should be performed in the CPU specific startup file, e.g.
ARM\HARDWARE\EB55\INITARM55800.F TH.

If the EQUate #IRQs is greater than one, IRQ nesting is supported with the penalty of greater
overhead. IF IRQ nesting is required, the IRQ stack size should be at least 64*#IRQs bytes,
and TASK-SIZE*#IRQs bytes should be added to the SWI stack. If IRQ nesting is not required
the IRQ stack must be at least TASK-SIZE bytes.

If the EQUate #FIQs is greater than one, FIQ nesting is supported with the penalty of greater
overhead. TF FIQ nesting is required, the FIQ stack size should be at least 64*#FIQs bytes,
and TASK-SIZE*#FIQs bytes should be added to the SWI stack. If FIQ nesting is not required
the FIQ stack must be at least TASK-SIZE bytes.

PROC IRQ_entry \ --
This is the template code for vectored IRQ interrupt handlers. It is also used as the spurious
interrupt handler.

PROC FIQ_entry \ --
This is the template code for vectored FIQ interrupt handlers.

: IRQ: \ xt "<name>" -- ; -- isr
Creates an IRQ ISR that runs the given Forth word. At run time the entry point of the ISR is
returned. Use in the form:

’ <action> IRQ: <actionISR>
: FIQ: \ xt "<name>" -- ; -- isr

Creates an FIQ ISR that runs the given Forth word. At run time the address of the ISR is
returned. Use in the form:

’ <action> FIQ: <actionISR>
: SetDefIRQ \ xt --

Set the spurious IRQ handler to call the Forth word whose xt is given. Use interpretively in the
form:

’ <word> SetDefIRQ

The compiler sets this action to NOOP unless you use SetDefIRQ.

: InitSPU \ -
Initialise the spurious interrupt vector. This word is executed as part of the cold chain.

: EnlInt \ int# --
Enable the requested AIC interrupt.

: DisInt \ int# -—-
Disable the requested AIC interrupt.

: SetIRQisr \ isr mode int# --

Set the ISR to be the action of IRQ INT# with mode being set into the relevant AIC SMR
register. Then enable the interrupt. The FIQ interrupt is set with INT#=0 for which the
priority is unused. Note that Forth IRQ interrupt handlers must be created with IRQ: and
Forth FIQ handlers with FIQ:. Assembler routines may be created using:

PROC <name> ... END-CODE

Interrupt numbers may be found in the AIC section of the CPU data sheet.

Chapter 7: Interrupt handlers Y4

The mode value is a combination of priority 0..7 and interrupt type as follows. Only the first
two should be used for internal interrupts.

$000 equ ISR_low \ --n
Low level sensitive.

$020 equ ISR_nedge \ --n
Negative edge triggered.

$040 equ ISR_high \ --n
High level sensitive.

$080 equ ISR_pedge \ - n

Positive edge triggered.
An example of setting up an interrupt follows.

-
: ISRaction \ -- ; the Forth word

> ISRaction IRQ: MyIsr \ -- isr
#15 equ MyIsr# \ -- n

: SetupISR \ -- ; initialise
MyIsr ISR_low 7 or Mylsr#

I

=

7.12 Samsung S3C4510 IRQ and FIQ handlers

This implementation does NOT support nested FIQ interrupts. The notes in the Generic IRQ
section about interrupt nesting apply here.

If the EQUate #IRQs is greater than one, IRQ nesting is supported with the penalty of greater
overhead. IF IRQ nesting is required, the IRQ stack size should be at least 64*#IRQs bytes,
and TASK-SIZE*#IRQs bytes should be added to the SWI stack. If IRQ nesting is not required
the TRQ stack must be at least TASK-SIZE bytes.

create despatch_table \ -- addr ; 21 entry interrupt despatch table

This table holds the addresses (XTs) of the service routines for each of the 20 interrupts plus a
dummy for false interrupts. Equates for the interrupt numbers and their bit positions may be
found in the file SFRS3C4510.FTH. This table is defined in the CDATA section because it is
assumed that the code is run from RAM. If this is not so, change the CDATA above the definition
as required, usually to IDATA.

: SetFIQ \ xt int# --
Set the XT to be the action of FIQ INT#.

: SetIRQ \ xt int# --
Set the XT to be the action of TRQ INT#.

: EnInt \ int# --
Enable the requested interrupt.

: DisInt \ int# --
Disable the requested interrupt.

58 MPE Forth for TiniARM

7.13 ARM PL190 IRQ and FIQ handlers

This section is not a treatise on the ARM PL190 Vectored Interrupt Controller. These words
provide a fairly basic set of tools for using the ARM PL190 VIC, which is fully documented in
the ARM Technical Publications CD available free of charge from www.arm.com. The notes in
the Generic IRQ section about interrupt nesting apply here.

This code requires KERNEL62.FTH and the equate COLDCHAIN? must be set non-zero in the
control file. The VIC addresses should be defined in the SFRxxxx file which defines the peripheral
address for the silicon.

If the EQUate #IRQs is greater than one, IRQ nesting is supported with the penalty of greater
overhead. IF IRQ nesting is required, the IRQ stack size should be at least 64*#IRQs bytes,
and TASK-SIZE*#IRQs bytes should be added to the SWI stack. If IRQ nesting is not required
the IRQ stack must be at least TASK-SIZE bytes.

FIQ nesting is not supported by this code. If required a suitable starting point is the AT91
code. The FIQ stack must be at least TASK-SIZE bytes.

PROC IRQ_entry \ --
This is the template code for vectored IRQ interrupt handlers. It is also used as the default

interrupt handler.

PROC FIQ_entry \ --

This is the template code for FIQ interrupt handlers.

: IRQ: \ xt -- ; -- isr

Creates an IRQ ISR that runs the given Forth word. At run time the entry point of the ISR is
returned. Use in the form:

’ <action> IRQ: <actionISR>
: SetDefIRQ \ xt —-

Set the default IRQ handler to call the Forth word whose xt is given. Use interpretively in the
form:

’ <word> SetDefIRQ

The compiler sets this action to NOOP unless you use SETDEFIRQ.

: SetFIQ \ xt --

Set the FIQ interrupt to call the Forth word whose xt is given. Use interpretively in the form:
? <word> SetFIQ

: InitVIC \ -
Initialise the VIC Default interrupt vector. This word is executed as part of the cold chain.

: EnlInt \ src# --
Enable the requested VIC interrupt source.

: DisInt \ src# --
Disable the requested VIC interrupt source.

: SetIrqlsr \ isr src# slot# —-
Set the ISR to be the action of the source interrupt number src# (0..31) being set into the
corresponding slot (slot# = 0..15) where slot# corresponds to priority (0 = highest priority).

Chapter 7: Interrupt handlers 59

Then enable the interrupt. Note that Forth IRQ interrupt handlers must be created with IRQ:
<name>. Assembler routines may be created using:

PROC <name> ... END-CODE

Interrupt source numbers may be found in the VIC section of the CPU data sheet and the
relevant SFRxxxx.FTH file.

: setFIQsrc \ src# --

Set src# to be an enabled FIQ interrupt. During cross compilation the ISR address must have
been set with SetFIQ above. The FIQ interrupt can be enabled and disabled by EnInt and
DisInt.

An example of setting up an interrupt follows.

(B
: ISRaction \ -- ; the Forth word

> ISRaction IRQ: MyIsr \ -- isr
#15 equ MySrc# \ -- n ; what triggers it
#3 equ MySlot# \ -- n ; what priority (O=highest)

: SetupISR \ -- ; initialise
MyIsr MySrc# MySlot# SetIRQisr

I

N J
. .VIC -

Show status of the VIC.

: SWINT \ int# --

Generate interrupt from software.

60

MPE Forth for TinitARM

Chapter 8: Character Queues 61

8 Character Queues

The file COMMON\CQUEUES.FTH provides circular character (byte) queues. If the equate
TASKING? is non-zero, the blocking routines will use PAUSE. Interrupts are disabled for the
queue empty/full checks.

8.1 Queue data structure

struct /cqueue \ -- size ; character queue structure in idata, buffer in udata
Circular queue data structure.

int >qhead \ Offset of head

int >qtail \ Offset of tail

int >qchars \ Number of characters in the queue

int >gmask \ Mask to apply to pointers

ptr >qgbuffer \ Base address of character buffer

end-struct

! cqueue: \ size -- ; -- cqueue ; size CQUEUE: <name>

An interpreter definition to build a character queue of the specified size. The queue data
structure is built in the current IDATA space, and the buffer itself is in the current UDATA
space. Executing <name> returns the address of the queue data structure. N.B. The size of a
queue must be a power of two, e.g. 32, 64 ...

: init-cqueue \ cqueue -- ; initialise queue
Initialise the specified queue created by CQUEUE:.
: init-hcqueue \ size cqueue -- ; SFP002

Initialise the specified queue created by ALLOCATE. When a queue is allocated from the heap by
a phrase of the form /CQUEUE <size> + ALLOCATE, this word must be used.

8.2 Queue primitives
(>cqueue) \ char cqueue -- ; put character on cqueue

Put char into the queue with no checks.

(cqueue>) \ cqueue -- char ; get next character from queue
Get the next character from the queue with no checks.

(cqfull?) \ queue -- flag ; TRUE if queue full
Return true if the queue is full. No interrupt protection is provided.

: cqfull? \ queue -- flag ; TRUE if queue full
Return true if the queue is full. Interrupt protection is provided.

: cqchars \ queue -- n
Return the number of characters in the queue.

: cqempty? \ queue -- flag ; TRUE if queue empty
Return true if the queue is empty.

: cqnotempty? \ queue -- flag ; TRUE if queue not empty
Return true if the queue is not empty, i.e. if it contains any characters.

: >cqueue \ char cqueue -- ; spins if full
Put a character into the queue. If the queue is full, the system waits (blocks) until there is
enough space.

62 MPE Forth for TinitARM

: cqueue> \ queue -- char ; spins while queue empty
Remove the next character, waiting if the queue is empty.

Chapter 9: Serial driver 63

9 Serial driver

By default the serial drivers are initialised to 115200 baud for UARTO which is the serial console,
and UART1 is initialised to 38400 baud. These baud rates can be changed by setting the relevant
UART DLL and DLM registers. See the chip user manual for more details.

9.1 Configuration
The following equates control which UARTSs are required and initialised. If the equates are
undefined, they are generated and set to 1.

1 equ useUARTO? \ -- n
Compile UARTO code if non-zero.

1 equ useUART1? \ -- n
Compile UART1 code if non-zero.

9.2 Serial interrupt service routines

: >RxQ \ char queue --
Put character from UART into queue. INTERNAL.
: FIFO>RxQ \ base queue --

Given a UART base address and a character queue, empty the UART FIFO into the queue.
INTERNAL.

: serO-isrh A

UARTO high level ISR. INTERNAL.

’ serO-isrh IRQ: serO-isr

UARTO interrupt service routine entry point.
: serl-isrh \ --

UARTT high level ISR. INTERNAL.

> serl-isrh IRQ: serl-isr

UART1 interrupt service routine entry point.

9.3 Initialisation

: gen-baud-rate \ bps-rate -- divisor16é

Takes the required serial comms rate (in BPS) and returns a system-dependent number of
parameters that should be sufficent to effect the baud rate selection by initialising the hardware.
: init-ser \ —-

Initialise both UARTSs.

9.4 Serial primitives
(seremit) \ char base --
Send a character on the UART whose base address is given. INTERNAL

(serCR) \ base --
Send a CR/LF pair on the UART whose base address is given. INTERNAL

(serTYPE) \ c-addr len base --
Type a string to the UART whose base address is given. INTERNAL

64 MPE Forth for TinitARM

: serEmit0 \ char --
Transmit a character on UARTO.

: serkey?0 \ -- t/f

Return true if UARTO has a character available.
: sertype0 \ addr len --

Type a string to the UART.

: serCRO \ --

Issue a CR/LF pair to the UART.

: serkey?1 \ - t/f

Return true if UART1 has a character available.

: serEmitil \ char —-
Transmit a character on UART1I.

: serTYPE1 \ c-addr len --
Type a string to the UART.
: serCR1 \ -

Issue a CR/LF pair to the UART.

9.5 Generic i/o assignments
create Console0 \ -- addr ; OUT managed by upper driver
Generic I/O device for UARTO.

create Consolel \ -- addr ; OUT managed by upper driver
Generic I/O device for UART1.

ConsoleO constant Console

CONSOLE is the device used by the Forth system for interaction. It may be changed by a phrase
of the form:

<device> dup opvec ! ipvec !
9.6 Forth Stamp specific code

This code is only compiled if the equate ArmStamp? is set true.

_UARTO constant UARTO \ -- addr
Base address of the UARTO peripheral.

_UART1 constant UART1 \ -- addr
Base address of the UART1 peripheral.

: SetBaud \ bps-rate uart --
Takes the required serial comms rate (in BPS) and the UART base and sets the baud rate.

Chapter 10: LPC software 12C driver 65

10 LPC software 12C driver

10.1 Introduction

The I2C interface is a software bit-banging system using GPIO bits 2, 3 and 4. The initialisation
code sets up these bits as open drain outputs.

The driver code in I2CLPCBB.FTH must be compiled before the generic drive code in
[2CBASE.FTH and the device specific files (e.g. AT24C512.FTH) are compiled.

0 equ TestI2C? \ -- n
Set this equate non-zero to include the test code at the end of the file. This equate also controls
the compilation of I2C test code in other files.

: initI2C \ —-
Initialise the I2C hardware. Performed after reset.

10.2 Timing

#10 equ I2CPeriod \ -- us
Define the I2C bit time in microseconds.

I2Cperiod system-speed 1000000 */ equ I2Cclocks \ -- n
The number of CPU clocks in a bit time.

1 equ clocks/ins \ --n

The number of CPU clocks per instruction. Tune this to your hardware set up (memory width
and speed). On most ARMs, a store takes 2 cycles, a load takes 3, and branch takes 3 and
all others take 1. Look at the specific core documentation on the ARM technical reference CD
for clock/instruction details. Look at your board schematics and setup code for details of the
memory bandwidth. For example a 16 bit bus with two wait states and no cache may lead to
six or more clocks per instruction.

#20 equ clocks/DO

the number of clocks needed to execute DO at the start of DO..LOOP including parameter
passing and the call to (DO). This number may be sensitive to the compiler version and switch
settings.

9 equ clocks/LOOP
the number of clocks needed to execute LOOP at the end of DO..LOOP. This number may be
sensitive to the compiler version and switch settings.

I2Cclocks 4 / clocks/DO - clocks/LOOP / equ /I2Cqbit \ --n
The number n for "n 0 DO LOOP" to generate an 12C quarter bit time.

: I2Cdelay \ —-
Wait one quarter of an 12C bit. Tune the equates above for a one quarter bit time.

10.3 I2C bit functions

: read_scl \ -- bit
Read SCL bit and return in l.s. bit. No delays.

: write_scl \ b -- ; output clock bit
Write to SCL with no delays.

: SCL_low \ -

66 MPE Forth for TiniARM

Set SCL low. A quarter cycle delay is performed before and after the transition.

: SCL_high \ —-

Set SCL high. A quarter cycle delay is performed before and after the transition.
: read_sda \ -- bit

Read SCL bit and return in l.s. bit.

: write_sda \ b -- ; output to SDA

Write the SDA bit.

: sda_low \ -

Set SDA low.

: sda_high \ —-

Set SDA high.

Chapter 11: 12C generic primitives 67

11 I2C generic primitives

The code in I2CBASE.FTH provides the following words for constructing drivers for 12C devices:

START_I2C
Generate a START condition

STOP_I2C Generate a STOP condition

READ_BYTE_I2C
Read a byte from the 12C lines

WRITE_BYTE_I2C
Write a byte to the 12C lines

+ACK_I2C Generate and test the ACK bit
-ACK_I2C Do not generate and test the ACK bit.

The code assumes that bit banging primitives are used to generate the 12C signals, and that
these are provided by low level code. Examples of the low level code are provided in files named
12CrzzDRV.FTH where xxx indicates the hardware.

: start_i2c \ —-
Define a start condition, bring SDA high-low while SCL is high

: stop_i2¢c \ -
Define a stop condition, bring SDA low-high while SCL is high

1 value ack_i2c? \ - n

If a non-zero value is used, the system will generate the ACK bit on SDA for reads, otherwise
SDA is left high. For a non-zero value on writes, the system will check the ACK bit and THROW
if it is non-zero.

: +ack_i2c \ -~
check ACK cycles.
: —ack_i2c \ -

Do not check ACK cycles.

: read_byte_i2c \ -- in_byte
Read a byte, MSB first. If the value I2C_ACK? is non-zero, pull SDA low during the ACK bit,
otherwise leave it high

: write_byte_i2c \ byte --
Write a byte by shifting, MSB first. If ACK_I2C? is set, read ack bit on SDA, and THROW if
the ACK bit is high.

68

MPE Forth for TinitARM

Chapter 12: Software Floating Point 69

12 Software Floating Point

12.1 Introduction

Although most embedded applications only require integer arithmetic, some do require floating-
point. Therefore software floating-point is supplied with the cross-compiler and the target
Forth. The target floating point wordset is not fully ANS compliant, but satisfies the needs of
embedded systems without undue complexity. The Forth data stack and the floating point stack
are the same. The floating point data storage format is not IEEE format, but is optimised for
performance on small controllers. If you need a separate floating point stack or IEEE format
storage, please contact MPE. Any variations in the implementation will be documented in the
target specific section of the manual.

The cross-compiler has a more limited floating-point support than the target. Some words are
avaliable during compilation of colon definitions, but not while interpreting.

12.2 Source code

The source code is in two sets of files, one for 32 bit Forth targets, the other for 16 bit targets.
The files are:

COMMON\SFP32HI 32 bit primitives
COMMON\SFP32COM 32 bit high level code
COMMON\SFP16HI 16 bit primitives
COMMON\SFP16COM 16 bit high level code

These files use no assembler definitions. Some targets have code versions of the primitives, and
these will be found in the CPU specific code directory. A significant increase in performance
can be obtained by using the code files.

12.3 Entering floating-point numbers

Floating-point numbers can be entered in two forms, 1.234 and 0.1234el. Floating-point numbers
are compiled as literal numbers when in a colon definition and placed on the cross-compiler’s
stack when outside a definition. The form with an 'E’ character is required in most cases, those
where conversion is performed by FNUMBER?. The form without an ’E’ character must contain

a ’.” in the mantissa and is accepted by the more flexible >FLOAT. Both words are documented
later.

Note also that MPE Forths use ’,” as the double number indicator.

12.4 The form of floating-point numbers

A floating-point number is placed on the Forth data stack. In the Forth literature, this is
referred to as a combined floating point and data stack. For 32 bit targets, a floating point
number consists of two 32-bit numbers, one for the mantissa and one for the exponent. For 16
bit targets, it consists of a 32-bit double mantissa and a single 16-bit exponent. The mantissa
is normalised. The exponent is on the top of the stack. Note that for 16 bit targets, number
conversion is affected by the cross-compiler directives HOST-MATH and TARGET-MATH. HOST-MATH

70 MPE Forth for TinitARM

leaves double numbers and floats in 32-bit form, whereas TARGET-MATH leaves them in 16-bit
form.

12.5 Creating variables

To create a variable, use FVARIABLE. FVARIABLE works in the same way as VARIABLE. For
example, to create a floating-point variable called VAR1 you code:

FVARIABLE VAR1

When VAR1 is used, it returns the address of the floating-point number.

12.6 Accessing variables

Two words are used to access floating-point variables, F@ and F!. These are analogous to @ and
I,

12.7 Creating constants

To create a floating-point constant, use FCONSTANT. FCONSTANT is analogous to CONSTANT. For
example, to generate a floating-point constant called CON1 with a value of 1.234, you enter:

1.234e0 FCONSTANT CON1
When CON1 is executed, it returns 1.234 on the Forth stack.

12.8 Using the supplied words

The supplied words split into several groups:
e sines, cosines and tangents
e arc sines, cosines and tangents
e arithmetic functions
e logarithms
e powers
e displaying floating-point numbers

e inputting floating-point numbers

The following functions only exist as target words so you cannot use them in calculations in
your source code when outside a colon definition.

12.8.1 Calculating sines, cosines and tangents

To calculate sine, cosine and tangent, use FSIN, FCOS and FTAN respectively. Angles are expressed
in radians.

12.8.2 Calculating arc sines, cosines and tangents

To calculate arc sine, cosine and tangent, use FASIN, FACOS

and FATAN respectively. They return an angle in radians.

Chapter 12: Software Floating Point 71

12.8.3 Calculating logarithms

Two words are supplied to calculate logarithms, FLOG and FLN. FLOG calculates a logarithm to
base 10 (decimal). FLN calculates a logarithm to base e. Both take a floating-point number in
the range from 0 to Einf.

12.8.4 Calculating powers

Three power functions are supplied:

FE"X F10°X X"Y
12.9 Degrees or radians

The angular measurement used in the trigonometric functions are in radians. To convert between
degrees and radians use RAD>DEG or DEG>RAD. RAD>DEG converts an angle from radians to degrees.
DEG>RAD converts an angle from degrees to radians.

12.10 Displaying floating-point numbers

Two words are available for displaying floating-point numbers, F. and E.. The word F. takes
a floating-point number from the stack and displays it in the form xxxx.xxxxx or x.xxxxxEyy
depending on the size of the number. The word E. displays the number in the latter form.

12.11 Changes from v6.0 to v6.1

Renamed DINT to F>D for conmsistency. F>D is the ANS word. The original F>D was just a
synonym. Similarly SINT was renamed to F>S.

The word FLOATS that enabled floating point number conversion has been renamed to REALS to
avoid a name conflict with the ANS word of the same name.

The F-PACK vocabulary has been removed as no one liked it, and it could be considered contrary
to the ANS Forth specification. If you wish to retain the F-PACK vocabulary, add the following
lines before and after the compilation of the floating point code:

(B
only forth definitions \ #x% added *xx
vocabulary f-pack \ *x*x added *xx*
also f-pack definition \ **x added *x*x

\
\
\

include %CommonDir’\Sfp32Hi primitives
include %CommonDir?\Sfp32Com common high level code
previous definitions *kx added **x

The code enabling floating point to work in degrees or radians has been commented out for
ANS compatibility. All trig functions now operate in radians. The commented out code may be
uncommented if you need backward compatibility.

12.11.1 32 bit targets: software floating point

Overhauled 32 bit software floating point and incorporated improvements contributed by Hiden

72 MPE Forth for TinitARM

Analytical. These include more complete special case detection, faster high level code, and more
accurate number input and output.

Removed all use of global variables except PLACES to make the floating point code usable in
interrupt routines and in multitasked systems. If the output routines are to be multitasked,
change the definition of PLACES from:

VARIABLE PLACES 8 PLACES !

to:
CELL +USER PLACES

and remember to initialise PLACES before using the floating point output routines.

Many words that are only useful as factors have been made headerless to save target memory
space.

12.11.2 16 bit targets: software floating point

Note that the 16 bit floating point pack is not re-entrant. If you need to use the floating point
pack in a multitasking system, you should convert the global variables to USER variables. The
word +USER can be used

<size> +USER <name>

to define a USER variable of a given size (normally a CELL) at the next free offset in the USER
area. Only PLACES will need initialisation.

12.12 Glossary

12.12.1 Basic stack and memory operators

: F! \ r addr --
Stores r at addr

: F@ \ addr -- r
Fetches r from addr.

: F, \r --
Lays a real number into the dictionary, reserving 8 bytes.

: FDUP \r-—-rr
Floating point equivalent of DUP.

: FOVER \rlr2 ——-rl1r2rl
Floating point equivalent of OVER.

: FROT \rl r2r3--r2r3ril
Floating point equivalent of ROT.

: FPICK \ fu..f0 u -- fu..f0 fu
Floating point equivalent of PICK.

: FROLL \ f1 f2 f3 -- f2 f3 f1
Floating point equivalent of ROLL.

: FSWAP \rlr2 -r2rl

Chapter 12: Software Floating Point 73

Floating point equivalent of SWAP.

: FDROP \ r -—-
Floating point equivalent of DROP.

: FNIP \ rl r2 —— r2
Floating point equivalent of NIP.

12.12.2 Floating point defining words
: FVARIABLE \ "<spaces>name" -- ; Run: -- f-addr
Use in the form: FVARIABLE <name> to create a variable that will hold a floating point number.

: FCONSTANT \ r "<spaces>name" -- ; Run: -- r
Use in the form: <float> FCONSTANT <name> to create a constant that will return a floating
point number.

: FARRAY \ "<spaces>name" fn-1..fO n -- ; Run: n -- rn

Use in the form: n FARRAY <name> to create a variable that will hold a default floating point
number. When the array name is executed, the index i is used to retun the address of the i’th 0
zero-based element in the array. For example, 5 FARRAY TEST will set up 5 array elements each
containing 0, and then £ n TEST F! will store f in the nth element, and n TEST F@ will fetch it.

12.12.3 Type conversions

: NORM \'nexp —— £
Normalise a single integer and a single exponent to produce a floating point number. INTER-
NAL.

: DNORM \ d exp -- fn ; normalise a 64 bit double
Normalise a double integer and a single exponent to produce a floating point number. INTER-

NAL.

: FSIGN \ fn -- [fn| flag ; true if negative

Return the absolute value of fn and a flag which is true if fn is negative.

: S>F \'n-- fn

Converts a single integer to a float.

: F>S \ fn - n

Converts a float to a single integer. Note that F>S truncates the number towards zero according
to the ANS specification. If |fn| is greater than maxint, +/-maxint is returned.

: D>F \d-- fn

Converts a double integer to a float.

: F>D \ fn -- d

Converts a float to a single integer. Note that F>D truncates the number towards zero according

to the ANS specification. If |fn| is greater than dmaxint, +/-dmaxint is returned.

: FINT \ f1 -- f2
Chop the number towards zero to produce a floating point representation of an integer.

12.12.4 Arithmetic
: FNEGATE \ rl —— r2

Floating point negate.

: 7FNEGATE \ fn n -- fnl|-fn
If n is negative, negate fn.

74

: FABS \ fn -- |fn]|
Floating point absolute.

: Fx \rl r2 -- r3
Floating point multiply.

: F/ \ rl r2 —— r3
Floating point divide.

: F+ \ rl r2 -- r3
Floating point addition.

: F- \ rl r2 -- r3
Floating point subtraction.

: FSEPARATE \ f1 f2 —- £3 f4

MPE Forth for TinitARM

Leave the signed integer quotient f4 and remainder f3 when f1 is divided by f2. The remainder

has the same sign as the dividend.

: FFRAC \ f1 £f2 —- £3

Leave the fractional remainder from the division f1/f2. The remainder takes the sign of the

dividend.

12.12.5 Relational operators

: FO< \ f1 -- flag
Floating point 0<.

: FO> \ f1 -- flag
Floating point 0>.
: FO= \ f1 -- flag
Floating point 0=.

: FO<> \ f1 -- flag
Floating point 0<>.

: F= \ f1 £f2 -- flag

Floating point =.

1 F< \ rl1 r2 -- flag

Floating point <.

: > \ f1 £f2 -- flag

Floating point >.

: FMAX \ rl r2 -- r1|r2

Floating point MAX.

: FMIN \ rl r2 -- r1|r2

Floating point MIN.

12.12.6 Rounding

f# 1.0 fconstant J%O0NE
Floating point 1.0.

: FLOOR \ r1 -- r2
Floored round towards -infinity.

: FROUND \rl -- r2

Round the number to nearest or even.

Chapter 12: Software Floating Point

12.12.7 Miscellaneous
: FALIGNED \ addr -- f-addr
Aligns the address to accept an 8-byte float.

: FALIGN \ -
Aligns the dictionary to accept an 8-byte float.

. FDEPTH \ -- +n
Returns the number of floats on the stack.

: FLOAT+ \ f-addrl -- f-addr2
Increments addr by 8, the size of a float.

: FLOATS \ n1 -- n2
Returns n2, the size of nl floats.

12.12.8 Floating point output
1 s>f 10 s>f f/ fconstant %.1
Floating point 0.1.

1 s>f fconstant %1
Floating point 1.0.

10 s>f fconstant %10
Floating point 10.0.

1250000000 34 fconstant %10710
Floating point 10~10.

1844674407 -33 fconstant %10°-10
Floating point 10°-10.

F# 1.0E256 FCONSTANT %107256
Floating point 107256.

F# 1.0E-1 FCONSTANT %10E-1
Floating point 107-1.

F# 1.0E-10 FCONSTANT %10E-10
Floating point 10°-10.

F# 1.0E-256 FCONSTANT %10°-256
Floating point 107-256.

16 FARRAY POWERS-0F-10E1l
An array of 16 powers of ten starting at 1070 in steps of 1.

17 FARRAY POWERS-O0F-10E16
An array of 17 powers of ten starting at 1070 in steps of 16.

16 FARRAY POWERS-0F-10E-1
An array of 16 powers of ten starting at 1070 in steps of -1.

17 FARRAY POWERS-0OF-10E-16
An array of 17 powers of ten starting at 1070 in steps of -16.

: RAISE_POWER \ mant exp -- mant’ exp’
Raise the power in preparation for number formatting.

: SINK_FRACTION \ mant exp -- mant’ exp’

76 MPE Forth for TinitARM

Reduce the power in preparation for number formatting.

variable places 8 places ! \ -- addr
Number of digits output after the decimal point.

: ROUND \ f1 —- £2
Rounds least significant eight bits to 0 if higher 2 bits are all Os or all 1s.

: ?10PWR \ expl[2] -- expl[2] expl[10]
Generate the power of ten corresponding to the power of two. INTERNAL.

: SIGFIGS \ fn n -- d dec_exponent
From fn, generate a double number corresponding to n significant digits and a decimal exponent.
INTERNAL.

: op-prepare \ fn -- d exp sign

From fn, generate a double number corresponding to n significant digits, a decimal exponent
and a sign indicator (nz=negative). INTERNAL.

: .EXP \ exp --
Display the exponent. INTERNAL.
. N# \dn -- &’

Convert n digits. INTERNAL.

: E. \ n exp —-
Print the f.p. number on the stack in exponential form, x.xxxxxEyy.

: REPRESENT \ r c-addr u -- n flagl flag2
Assume that the floating number is of the form +/-0.xxxxEyy. Place the significand xxxxx at
c-addr with a maximum of u digits. Return n the signed integer version of yy. Return flagl true
if f is negative, and return flag2 true if the results are valid. In this implementation all errors
are handled by exceptions, and so flag2 is always true.

: F. \ f --
Print the f.p. number in free format, xxxx.yyyy, if possible. Otherwise display using the
x.xxxxBEyy format.

12.12.9 Floating point input

Note that number conversion takes place in PAD.

: FLITERAL \ Comp: r == ; Run: -- r

Compiles a float as a literal into the current definition. At execution time, a float is returned.
For example, [%PI F2* | FLITERAL will compile 2PI as a floating point literal. Note that
FLITERAL is immediate.

: CONVERT-EXP \ c-addr --
If the character at c-addr is "D’ convert it to 'E’. INTERNAL.

: CONVERT-FPCHAR \ c-addr --
Convert the f.p. char ’.” to the double char ’,” for conversion. INTERNAL.

: ALL-BLANKS? \ c-addr len -- flag
Return true if string is all blanks (spaces). INTERNAL.

: FCHECK \ -- am 1lm ae le e-flag .-flag
Check the input string at PAD, returning the separated mantissa and exponent flags. The e-flag

is returned true if the string contained an exponent indicator 'E’ and the .-flag is returned true
if a’. was found. INTERNAL.

Chapter 12: Software Floating Point 7

: MNUM \ ccaddr u -=-d 2 | 0

Convert the mantissa string to a double number and 2. If conversion fails, just return 0. IN-
TERNAL.

: ENUM \ ccaddr u == n 1 | 0 ; str as above

Convert the exponent string to a single number and 1. If conversion fails, just return 0. IN-
TERNAL.

: *10°X \ float dec_exponent -- float’
Generate float’ = float *10~dec_exp. INTERNAL.

: FIXEXP \ dmant exp -- mant’ exp’

Convert a double integer mantissa and a single integer exponent into a floating point number.
INTERNAL.

: FNUMBER? \ addr -- 0/.../mant exp 2

Behaves like the integer version of NUMBER? except that if the number is in F.P. format and BASE
is decimal, a floating point conversion is attempted. If conversion is successful, the floating point
number is left on the float stack and the result code is 2. This word only accepts words with an
'K’ as a floating point indicator, e.g, 1.2345¢0.

: >FLOAT \ c-addr u -- r truel|false

Try to convert the string at c-addr/u to a floating point number. If conversion is successful, flag
is returned true, and a floating number is returned on the float stack, otherwise just flag=0 is
returned. This word accepts several forms, e.g. 1.2345e0, 1.2345, 12345 and converts them to a
float. Note that double numbers (containing a ’,”) cannot be converted.

(F#) \ addr -- fn 2 | 0
The primitive for F# and F#IN below.
: F#IN \ ——fn2 |0

Attempts to convert a token from the input stream to a floating-point number. Numbers in
integer format will be converted to floating-point. An indicator (0 or 2/3) is returned in the
same way as an indicator is returned by FNUMBER?.

: F# \ -- [f] ; or compiles it [state smart]

If interpreting, takes text from the input stream and, if possible converts it to a f.p. number
on the stack. Numbers in integer format will be converted to floating-point. If compiling, the
converted number is compiled.

: REALS \ -- ; allow f.p input
Switch NUMBER? to permit floating point input using FNUMBER?. This action can be re-
versed by INTEGERS. Both REALS and INTEGERS are in the FORTH vocabulary.

: INTEGERS \ -- ; no f.p input
Switch NUMBER? to restore integer only input.

12.12.10 Trigonmetric functions

N.B. All angles are in radians.

: DEG>RAD \ nl -- n2
Convert degrees to radians.

: RAD>DEG \ nl -- n2
convert radians to degrees.

: FSQR \ f1 -- f2 ; FSQR by Heron’s formula

78 MPE Forth for TinitARM

F2=sqrt(f1) by Heron’s formula.

: FSIN \ f1 —- £2
f2=sin(f1).

: FCOS \ f1 —- £2
f2=cos(f1).

: FTAN \ f1 —- £2
f2=tan(f1).

: FASIN \ f1 -- £2
f2=arcsin(f1).

: FACOS \ f1 -- £2
f2=arccos(f1).

: FATAN \ f1 -- £2

f2=arctan(f1).

12.12.11 Power and logarithmic functions
: FLN \ f1 -- £2
Take the logarithm of f1 to base e and return the result.

: FLOG \ f1 -- f2

Take the logarithm of f1 to base 10 and return the result.
: FE°X \ f1 -- f2

f2=e~f1.

: F107X \ f1 -- £2

f2=10"f1

: FX°N \ x-real n-integer -- fx"n

fx"n=x"n where x is a float and n is an integer.

: FX°Y \ x-real y-real -- fn
fn=X"Y where Y and Y are both floats.

12.13 ARM coded primitives

The software floating point pack requires several support primitives. High level versions are
provided in SFP16HIL.LFTH and SFP32HI.FTH for 16 and 32 bit targets. Some targets have
coded versions in the CPU directory and these will provide much better performance. The
support file should be compiled before the common file.

code <-S \ nl carry-in-flag -- n2 carry-out-flag
Perform a left shift, applying the carry in to the l.s. bit and returning the carry out as 1 or 0.

code S-> \ nl carry-in-flag -- n2 carry-out-flag

Perform a right shift, applying the carry in to the m.s. bit and returning the carry out as 1 or
0.

code d<<1 \ xd -- xd<<1
One bit double left shift.
code d>>1 \ xd —- xd>>1

One bit double right shift.

Chapter 12: Software Floating Point

code D>>N \dm -- d>>m ; SFP002
M bit double right shift.

79

80

MPE Forth for TinitARM

Chapter 13: Periodic Timers 81

13 Periodic Timers

This code provides a timer system that allows many timers The Forth words in the user accessible
group documented below are compatible with the token definitions for the PRACTICAL virtual
machine, with the code supplied with MPE’s embedded targets, and with VFX Forth. This
code assumes the presence of a global value TICKS which holds a time value incremented in
milliseconds. The timebase is approximate. Granularity and jitter are affected by the timer
ISR and the time taken by your own code to execute. By default, the timer is set to run every
10..100 ms. The source code is in the the file TIMEBASE.FTH.

The file DELAYS.FTH should be compiled after TIMEBASE.FTH. The code to start and stop
the timebase system is part of the ticker interrupt system, which is compiled after DELAYS.FTH.
If you need to write a new ticker interrupt handler, there will be examples to start from in the
<CPU>\DRIVERS folder. The required compilation order is this:

multitasker (optional)
TIMEBASE.FTH (optional)
DELAYS.FTH

Ticker driver

The timer chain is built using a buffer area, and two chain pointers. Each timer is linked into
either the free timer chain, or into the active timer chain.

All time periods are in milliseconds. Note that on a 32 bit system, these time periods must
be less than 2731-1 milliseconds, say 596 hours or 24 days, whereas if the code is on a 16 bit
system, time periods must be less than 2715-1 milliseconds, say 32 seconds.

13.1 The basics of timers

These basic words are defined for applications to use the timer system. Other words are detailed
elswhere in this chapter.

()

START-TIMERS \ -- ; must do this first

STOP-TIMERS \ -- ; closes timers

AFTER \ xt period -- timerid/0 ; runs xt once after period ms
EVERY \ xt period -- timerid/0 ; runs xt every period ms

TSTOP \ timerid -- ; stops the timer

MS \ period -- ; wait for period ms

- J

After the timers have been started, actions can be added. The example below starts a timer
which puts a character on the debug console every two seconds. Note that when using generic
I/0, the output and input devices MUST be specified.

82 MPE Forth for TinitARM

-
start-timers
Tt \ -- ; will run every 2 seconds

console opvec !

[char] * emit
> t 2 seconds every \ returns timer id, use TSTOP to stop it
-

The item on stack is a timer handle, use TSTOP to halt this timer.

AFTER is very useful for creating timeouts, such as required to determine if something has
happened in time. AFTER returns a timerid. If the action you are protecting happens in time,
just use TSTOP when the action happens, and the timer will never trigger. If the action does not
happen, the timer event will be triggered.

13.2 Considerations when using timers

All timers are executed within a single interrupt, and so all timer action words share a common
user area. This has some impact on timer action words. Since you do not know in which order
timer action words are executed, you must set up any USER variables such as BASE that you use,
either directly or indirectly.

The interrupt that handles all the timers does not set IPVEC and OPVEC to a default value. If you
use I/O words such as EMIT and TYPE within a timer action, you MUST set IPVEC and OPVEC
before using the I/0O. For the sake of other timer action routines that may still be using default
I/0, it is polite to save and restore IPVEC and OPVEC in your timer action words.

Do not worry about calling TSTOP with a timerid that has already been executed and removed
from the active timer chain; if TSTOP cannot find the timer, it will ignore the request.

Under some conditions, the execution time of all the timer routines may be longer than the
requested period of the timer. In addition, the timer interrupt may be subject to jitter.

13.3 Implementation issues

The following discussion is relevant if you want to modify this code. Functionally equivalent code
is provided with MPE’s VFX Forth systems. In the Windows environment, timer interrupts are
implemented by callbacks and critical sections.

By default, the word DO-TIMERS is run from within the periodic timer interrupt. If interrupts
are not re-enabled after resetting the timer interrupt, you may have latency issues if a number
of timers is used, or if one of the timer routines takes a considerable time. In this case, it would
be better to set up the timer routine to RESTART a task which calls DO-TIMERS, e.g.)

Chapter 13: Periodic Timers 83

-
: TIMER-TASK \ —-
<initialise>
BEGIN
DO-TIMERS STOP
AGAIN

Such a strategy also permits you to use a fast interrupt,
say 1lms, for the clock, and to trigger the TIMER-TASK

every say 32 ms.
=

13.4 Timebase glossary

0 value ticks \ -- addr ; holds timer count
Get current clock value in milliseconds.

#8 constant #timers \ -—- n ; maximum number of timers
A constant used at compile time to set the maximum number of timers required. Each timer
requires RAM as defined by the ITIMER structure.

: do-timers \ -
Process all the timers in the chain

: after \ xt period -- timerid/0 ; xt is executed once,
Starts a timer that executes once after the given period. A timer ID is returned if the timer
could be started, otherwise 0 is returned.

1 every \ xt period -- timerid/O ; periodically
Starts a timer that executes every given period. A timer ID is returned if the timer could be
started, otherwise 0 is returned. The returned timerID can be used by TSTOP to stop the timer.

: tstop \ timerid --
Removes the given timer from the active list.

84

MPE Forth for TinitARM

Chapter 14: Time Delays 85

14 Time Delays

The code in COMMON\DELAYS.FTH allows you to handle time delays specified in millisec-
onds. If you use the multitasker or COMMON\TIMEBASE.FTH, COMMON\DELAYS.FTH
should be compiled after them.

! pause \ -- ; multitasker hook
Allows the sytem multitasker to get a look in. If the multitasker has not been compiled, PAUSE
is defined a NOOP.

0 value ticks \ -- n
Return current clock value in milliseconds. This value can treated as a 32 bit unsigned value
that will wrap when it overflows.

: later \n--n’
Generates the timebase value for termination in n millseconds time.

1 expired \ n -- flag ; true if timed out
Flag is returned true if the timebase value n has timed out. N.B. Calls PAUSE.

: timedout? \ n -- flag ; true if timed out
Flag is returned true if the timebase value n has timed out. TIMEDOUT? does not call PAUSE,
so it can be used in interrupt handlers. In particular, TIMEDOUT? should be used rather than
EXPIRED inside timer action words to reduce timer jitter.

T ms \'n—-
Waits for n milliseconds. Uses PAUSE through EXPIRED.

86

MPE Forth for TinitARM

Chapter 15: LPC210x Ticker Interrupt 87

15 LPC210x Ticker Interrupt

The ticker is the basis of the TIMEBASE system. In order start the ticker the START-CLOCK
word is used. This initialises the TCO timer counter channel to produce a periodic interrupt
which updates the value TICKS. The period is set by the equate TICK-MS in milliseconds, and
the value of TICKS is updated by TICK-MS at every interrupt.

Other files named TICKxxx in the DRIVERS folder provide the same functionality for other
CPUs.

For the LPC210x, the default ticker uses Timer 0, Match Register 0 being used to reset the
count and generate an interrupt. Note that if the PWM outputs are not being used, the PWM
unit can be used as it includes the same register set as Timer 0 and Timer 1.

This code requires the interrupt facilities in INTARMS3.

15.1 Configuration equates
_timer0 equ _ticker \ -- addr
Select the timer/counter unit to use for the ticker

BIT1 equ TickerBit \ -- mask
The bit to be set in PCONP to power the counter/timer.

t0int# equ TickInt# \ -- src
select the source number of the ticker interrupt.

#15 equ TickSlot# \ --n
Select the VIC slot/priority for the ticker interrupt. This is usually the lowest priority interrupt
in slot 15.

1 equ /preTick \ -- n

Select the prescaler division ratio.
/pretick 1- equ init_preDiv

The initial value of the prescaler divider.

: gen-ticks \ us clock -- n
An INTERPRETER definition that takes a period in microseconds and the clock speed in herz
to produce the required value to be loaded in the match register.

tick-ms #1000 * system-speed gen-ticks equ #MRtick

The initial value of the match register calculated from the required ticker period TICK-MS in
milliseconds and the system clock speed SYSTEM-SPEED in herz.

15.2 Ticker interrupt handler

0 value ticks \ -- u ; returns the ticker value

Return current clock value in milliseconds. This value can treated as a 32 bit unsigned value
that will wrap when it overflows.

: ticker-isr \ -- ; high level interrupt handler
The high level interrupt handler for the ticker.

> ticker-isr IRQ: ticker-irq \ -- addr

88

Creates the IRQ handler for the ticker.

: start-clock \ -- ; start clock interrupt
Start the ticker periodic interrupt.

: stop-clock \ -- ; stop clock interrupt
Stop the ticker periodic interrupt.

: ms \'n --
Waits for n milliseconds.

15.3 Time base extensions

: start-timers \ -- ; Start intermal time clock

Initialise the TIMEBASE system.

: stop-Timers \ -- ; disable timer system
Stop the TIMEBASE ticker.

MPE Forth for TinitARM

Chapter 16: ARM multitasker 89

16 ARM multitasker

The ARM multitasker follows the model introduced with the v6.1 compilers. A few extensions
are also provided.

16.1 Configuration - normally performed earlier

0 equ test-multi? \ true to compile test code
If previously undefined, TEST-MULTI? is set to zero and test code is not compiled.

16.2 TCB data structure layout

e N
cell LINK link to next task
cell SSP Saved Stack Pointer
cell STAT Bit 0 1 = running, O = halted

Bit 1 1 = message pending

Bit 2 1 = event triggered

Bit 3 1 = event handler run

Bit 4..7 Reserved

others 1 = set to run task, available to user

cell TASK Task that sent message here
cell MESG Message address
kFell EVNTw CFA of word run as event handler)

This structure is allocated at the start of the USER area. Consequently the TCB of the current
task is given by UP.

struct /TCB \ -- size
The structure used by the code that matches the description above.

16.3 Task handling primitives

init-u0 constant main \ -- addr ; tcb of main task
Returns the base address of the main task’s USER area.

0 value multi? \ -- flag
Returns true if the tasker is enabled.

: single \ -

Disable scheduler.

: multi \ --

Enable scheduler.

CODE pause \ -- ; the scheduler itself

The software scheduler itself.

code status \ -- task-status
Returns the current task’s status cell, but with the run bit masked out.

CODE restart \ task -- ; mark task TCB as running
Sets the RUN bit in the task’s status cell.

CODE halt \ task -- ; reset running bit in TCB
Clears the RUN bit in the task’s status cell.

90 MPE Forth for TinitARM

: stop \ -- ; halt oneself
HALT’s the current task, and executes PAUSE.

16.4 Event handling

Event handling is only compiled if the equate EVENT-HANDLER? is set non-zero in the control file.

: set-event \ task --
Set the event trigger in task TCB.

1 event? \ task -- flag
Returns true if true if task has received an event trigger which has not been cleared yet.

: clr-event-run \ --
Reset the current task’s EVENT_RUN flag.

. to-event \ xt task -- ; define action of a task
Sets XT as the event handler for the task.

16.5 Message handling

Message handling is only compiled if the equate MESSAGE-HANDLER? is set non-zero in the
control file.

! msg? \ task -- flag
Returns true if task has received a message.

: send-message \ addr task --
Send a message to a task.

: get-message \ -- addr task

Wait for any message and return the message and the task it came from.
: wait-event/msg \ -~

Wait for a message or an event trigger.

16.6 Task structure management
code init-task \ xt task -- ; Initialise a task stack
Initialise a task’s stack before running it and set it to execute the word whose XT is given.

: add-task \ task -- ; insert into list
Add the task to the list of tasks after the current task.

: sub-task \ task —- ; remove task from chain
Remove the task from the task list.

: initiate \ xt task -- ; start task from scratch

Start the given task executing the word whose XT is given, e.g.
[’] <name> <task> INITIATE

: sleeper \ xt task --

Start task from scratch, but leave it HALTed. Use in the form:
[’] <action> <taskname> SLEEPER

to put a task on the active task list, but as if HALTed. SLEEPER allows you to make a task ready

Chapter 16: ARM multitasker 91

for waking up later, perhaps by another task. This avoids having to put STOP as the first word
in a task. Note that SLEEPER does not call PAUSE. See also INITIATE.

: terminate \ task --
Stop a task, and remove it from the list.
¢ init-multi \ -- ; initialisation with multi-tasking

Initialise the multitasker and start it. If tasking is selected by setting the equate TASKING?
in the control file, KERNEL62.FTH will automatically run this word. Make sure that your
initialisation code includes INIT-MULTI or your code will crash.

: his \ task uservar —-- addr

Given a task id and a USER variable, returns the address of that variable in the given task. This
word is used to set up USER variables in other tasks.

16.7 Semaphores

The semaphore code is only compiled if the equate SEMAPHORES? is set non-zero in the control
file.

A SEMAPHORE is an extended variable used for signalling between tasks, and for resource alloca-
tion. The counter field is used as a count of the number of times the resource may be used, and
the arbiter field contains the TCB of the task that last gained access. This field can be used for
priority arbitration and deadlock detection/arbitration.

: semaphore \ -- ; -- addr [child]

Creates a semaphore which returns its address at runtime. Use in the form:

Semaphore <name>
: signal \ addr --

SIGNAL increments the counter field of a semaphore, indicating either that another item has
been allocated to the resource, or that it is available for use again, 0 indicating in use by a
task. REQUEST waits until the counter field of a semaphore is non-zero, and then decrements
the counter field by one. This allows the semaphore to be used as a COUNTED semaphore.
For example a character buffer may be used where the semaphore counter shows the number of
available characters. Alternatively the semaphore may be used purely to share resources. The
semaphore is initialised to one. The first task to REQUEST it gains access, and all other tasks
must wait until the accessing task SIGNALs that it has finished with the resource.

16.8 TASK and START:

TASK <name> builds a named task user area. The action of a task is assigned and the task started
by the word INITIATE

[’] <action> <task> INITIATE

START: is used inside a colon definition. The code before START: is the task’s initialisation,
performed by the current task. The code after START: up to the closing ; is the action of the
task. For example:

92 MPE Forth for TinitARM

(A
TASK FOO
: RUN-FOO
FOO START:
begin ... pause again
- ’ J

All tasks must run in an endless loop, except for initialisation code. When RUN-F0O is executed,
the code after START: is set up as the action of task FOO and started. RUN-F0OO then exits.

If you want to perform additional actions after starting the task, you should use INITIATE to
start the task.

variable task-chain \ -- addr
Anchors list of all tasks created by TASK and friends.

. task \ -- ; -- task ; TASK <name> builds a task

Note that the cross-interpreter’s version of TASK has been modified from v6.2 onwards to leave
the current section as CDATA.

: task \ -- ; -- task ; TASK <name> builds a task

Creates a new task and data area, returning the address of the user area at run time. The task
is also linked into the task chain anchored by TASK-CHAIN.

. start: \ task —- ; exits from caller
Used inside a colon definition. The code following START: up to the ending semi-colon forms
the action of the task. The word containing START: finishes at START:.

16.9 Debugging tools
.task \ task --
Display task’s name if it has one.

.tasks \ task -- ; display all task names
Display all the tasks anchored by TASK-CHAIN.

.running \ —-
Display running tasks.

Chapter 17: Vocabulary and wordlist tools 93

17 Vocabulary and wordlist tools

: voc? \ wid -- flag

Return TRUE if wid’ is actually a vocabulary.

: .VOoC \ wid --

If wid represents a vocabulary, display its name, otherwise just display its value.
: ORDER \ -

Display the current search order and definitions vocabularies.

: VOCS \ -

Display all vocabularies.

: $FORGET \ c-addr --
Forgets word name in given string. See FORGET.

: FORGET \ '"<spaces>name" --
Used in the form "FORGET <name>", <name> and all following words are removed from the dic-
tionary. This word is marked obsolescent in the ANS specification, and is replaced by MARKER.

: MARKER \ "<spaces>name" -- ; Exec: --

MARKER <name> creates a word that when executed removes itself and ALL following defini-
tions from the dictionary. MARKER is the ANS replacement for FORGET. MARKER auto-
matically trims all wordlist and vocabulary based chains.

94

MPE Forth for TinitARM

Chapter 18: ROM PowerForth utilities 95

18 ROM PowerForth utilities

18.1 Introduction

Supplied as source in the ROMFORTH directory are utilities to:

e compile source code on your target board from the cross-compiler IDE
e upload a binary image from your target to your PC
e download a binary image to your target from your PC.

18.2 Compiling text files

Source text files can be compiled from the host PC onto the target system. This saves time
in not having to cross-compile the entire source if a small modification is made. The utilities
permit text file to be split into pages for better layout when printed. An ASCII Form Feed
character (decimal 12) separates one page from another.

18.2.1 The required files

To compile text files from your target board, cross-compile the files IODEF.FTH and
TEXTFILE.FTH.

18.2.2 Compiling a specified text file

To compile all or part of a specified text file onto your target, use INCLUDE in the form:
INCLUDE <filename>

This compiles the file <filename> into the target’s dictionary. The file name must include any
required extension AIDE’s internal file server must be enabled (in the console window configu-
ration), and will be triggered automatically.

18.3 XMODEM binary image download

Binary images can be downloaded to your PC using the XMODEM protocol.

Required files

To use this utility you must cross-compile the file COMMON\XMODEMTXRX.FTH.
Using the XMODEM binary download utility

To download a binary image from the target system to your PC, use BIN-DOWN in the form:
addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting from
addr. For example,

1200 400 BIN-DOWN

sends the area of memory from 1200 to 1599 to your host PC. AIDE’s internal file server must
be enabled (in the console window configuration), and will be triggered.

96 MPE Forth for TinitARM

18.4 XMODEM binary image upload

Binary images can be uploaded from your PC using the XMODEM protocol.
Required files
To use this utility you must cross-compile the file COMMON\XMODEMTXRX.FTH.

Using the XMODEM binary upload utility

To download a binary image from the target system to your PC, use BIN-UP in the form:

addr #bytes BIN-UP

where addr is the start address and #bytes is the number of bytes to down-load starting from
addr. For example,

1200 400 BIN-UP

loads the area of memory from 1200 to 1599 from your host PC. AIDE’s internal file server must
be enabled (in the console window configuration), and will be triggered.

18.5 IODEF.FTH

Before compiling this file, synonyms may need to be defined for SER-EMIT SER-KEY? and
SER-KEY. Add these in the control file before compiling IODEF.FTH.

IODEF.FTH provides equates and protocol primitives for AIDE.

18.5.1 AIDE support

variable disk-error \ -- addr ; set non-zero on error

This variable is set true when a transfer error occurs.

: wait-ack \ ——- ; wait for ACK character

This word waits for the host to send an ACK at the end of part of a transfer. INTERNAL.
: wait-ack/nack \ -- t/f ; true for NACK

This waits for either a NACK or an ACK from the host and leaves true or false on stack.
INTERNAL.

: send-block# \ n -- ; send block number to server
Sends a single length number as two bytes 00-FF, low byte first. INTERNAL.

: synch-to-host \ -- ; sync host to us

Waits for a START (0x01) character, flushes the input, and sends an ACK. INTERNAL. IN-
TERNAL.

18.6 Miscellaneous
: cls \ —-

Clear PowerTerm screen

Chapter 18: ROM PowerForth utilities 97

18.7 INCLUDE source code from AIDE

The file COMMON\ROMFORTH\TEXTFILE.FTH provides support for compiling a source
file from the AIDE server. The code has been updated for AIDE version 2.500 onwards.

: end-load \ -- ; switch back to keyboard input
This word is automatically performed at the end of a download to tidy up the comms.

: file-error \'n --
Handle an error when a file is being INCLUDEJ.

: $include \ $addr -- ; compile host file, counted string
Given a counted string representing a file name, compile the file from AIDE.

: include \ "<filename>" -- ; load file from host
Compile a file across the serial line from the AIDE file server. Use in the form:

include <filename>

The filename extension must be supplied.

18.8 Simple source file loader

The code in COMMON\ROMFORTH\FILETRAN.FTH provides a simple source file loader
which can be used with most terminal emulators. The download is controlled by XON/XOFF
flow control. When using the PowerTerm terminal emulator in AIDE, use the INCLUDE <file-
name> system which supports nested files and needs no special termination.

Each file compiled must include a single line
END-UP-LOAD

at the end to reset the interpreter.

For slow 8 bit CPUs without queued serial input, the terminal server may need to include pacing
delays after each character and an additional after CR/LF pairs.

: Up-Load \ -- ; Load ASCII text

Compile a file delivered by the terminal emulator. This word is intolerant of compilation errors.
: End-Up-Load \ -- ; Finish Up-Loading

Used on the target to restore the Forth interpreter after a file has been compiled.

98

MPE Forth for TinitARM

Chapter 19: XMODEM Receiver and Transmitter 99

19 XMODEM Receiver and Transmitter

19.1 Introduction

The file Common\ Xmodem TxzRz.fth implements the XMODEM 128 and 1024 byte protocols in
both directions. Use with AIDE requires AIDE release 3.00 upwards. A very simplified version
of the 128 byte checksum receive code may be found in Common\MinXmodemRx.fth and is
ideal for Flash reprogramming.

The original shorter code that just handles the 128 byte protocol is available as Com-
mon\ Xmodem TrRxz128.fth.

No test code is provided for this file as the system has been tested by comparison of transferred
binary files.

19.2 Words in XmodemTxRx.fth

19.2.1 Configuration
1 equ XmodemTx? \ -- n

Non-zero to compile transmit code

1 equ XmodemRx? \ -- n
Non-zero to compile receive code.

19.2.2 Constants and variables
$0101 equ blkerror
A block number error has occurred.

$0103 equ noreply
There was no reply within one second.

$0104 equ crcerror
Bad CRC or checksum.

$0105 equ overflow
Too many blocks were sent.

$010 equ maxerrs \ --n
Maximum number of errors before transfer is aborted.

#1024 Buffer: x-buffer \ -- addr
Holds a 128 or 1024 byte Xmodem data block.

#128 value /Xblk \ --n
Holds Xmodem block size, 1024 or 128.

0 value Xmode \ --n
Holds 0 for checksum mode, nz for CRC-16.

19.2.3 Common code

: init-blks \ addr #bytes -- #blks

Given the size of an image, return the number of complete 128 byte blocks, set the variable
CUR-~ADDRESS to ADDR and set the variable BLK# to 1.

100 MPE Forth for TiniARM

: +Xcrc \ crc char -- crc’
Update the XMODEM CRC with the given character. The initial value should be zero.

19.2.4 XMODEM transmission
(To-Buffer) \ -- ; copy 128 bytes to X-BUFFER

Move 128/1024 bytes from the memory pointed to by CUR-ADDRESS into X-BUFFER. This is
the default action of TO-BUFFER. The variable CUR-ADDRESS is set by BIN-DOWN and friends.

Defer To-Buffer \ --

Copy the next 128/1024 bytes to transmit to X-BUFFER. They are then transmitted from
X-BUFFER. You can change this action as required by your application. The default action
is (TO-BUFFER).

: ?Ack \ -- ; wait for char, abort if not ACK

Wait for a character and terminate the transfer and abort if the character is not an ACK.

: Send-Block \ Blk# -- ; transmit a block
Transmit the 128/1024 byte contents of X-BUFFER to the host.

: Bin-Down \ addr #bytes -- ; transfer memory to host

Download (transmit) the given block of memory to the host using the XMODEM 128/1024
byte block protocol. On entry, the variable CUR-ADDRESS is set to addr on entry and #bytes is
rounded up to a 128/1024 byte unit.

19.2.5 XMODEM reception

: ser—flush \ -- ; flush the link input
Flush all input characters from the host/target link.

: send-ack \ -- ; send ACK
Transmit an ACK character.

: send-nak \ —- ; Transmit a NAK character
Transmit a NAK character.

: send-can \ -- ; send CAN character
Transmit a CAN character.

: toomanyerrs? \ -- T|F ; true if too many errors
Return true if too many comms errors have occurred.

(From-Buffer) \ --
Move 128/1024 bytes from X-BUFFER into the memory pointed to by CUR-ADDRESS.

Defer From-Buffer \ -

Move 128/1024 bytes from X-BUFFER into the memory pointed to by CUR-ADDRESS. CUR-ADDRESS
is set up by BIN-UP and friends. The default action is (FROM-BUFFER). You can modify the
action to suit your own application.

: Get-Block \ -
Receive an XMODEM 128/1024 byte data block from the host, processing the header and
checksum data.
(WaitResponse) \ —-
Wait for up to one second for a character.

: SendReq \ -~
If Xmode is set, send a C character, otherwise send a NAK.

Chapter 19: XMODEM Receiver and Transmitter 101

0 value /RXms \ -
Holds the transfer time in milliseconds.

: Bin-Up \ addr len -- status ; status O = GOOD

Upload (receive) a block of data of the given size into memory using the XMODEM 128/1024
byte block protocol. An error status is returned, 0 indicating success. On entry, the variable
CUR-ADDRESS is set to addr on entry and len is rounded up to a 128/1024 byte unit. Note that
an error return of $0105 indicates the the file being sent is larger than the len input parameter.

: RecvXmodem \ addr len -- len’ status ; status=0=good

Upload (receive) a block of data of the given maximum size into memory using the XMODEM
128/1024 byte block protocol. The number of bytes correctly received and an error status are
returned, 0 indicating success. See BIN-UP above for more details.

19.2.6 Defaults

If you have changed the operation of the buffer handling routines, you can restore them.

: Xmodem-1k \ -
Default to 1k byte Xmodem blocks with CRCs. This usually gives the fastest transfers and best
error checking.

: Xmodem-128 \ --
Default to 128 byte Xmodem blocks with checksums. This works with virtually all terminal
emulators.

: XmodemDefaults \ -
Set the XModem transfer routines to their default host copy operations.

102 MPE Forth for TinitARM

Chapter 20: Philips LPC2xxx AP routines 103

20 Philips LPC2xxx IAP routines

The TAP is accessed by calling a Thumb routine at the IAPentry address with the address of a
command block in RO and the address of a status/result block (RAM) in R1. All the TAPxxx
words return a 0 result on success. Note also that all interrupts are disabled for the duration of
an IAP call, and therefore that ticker interrupts will not be serviced. In particular, the sector
erase command may take 400ms, and a write of a 512 byte line may take 1ms.

The LPC210x CPUs have 128kb Flash in 8kb sectors numbered from 0..15. These sectors may
be programmed in units of 512 bytes. Sector 15 is the boot sector which cannot be erased or
programmed. See the LPC2106 User Manual for more details.

1 equ FullIAP? \ --n

If this EQUate is set non-zero, additional TAP routines are compiled, e.g. to get the bootloader
version number and the device part number. The definition here is only used if it has not been
previously defined.

5 cells buffer: IAPcmd \ -- addr ; max 5 cells
Command input buffer for IAP routines.

3 cells buffer: IAPres \ -- addr ; max 3 cells
Result output buffer from IAP routines.

code IAP \ *cmd *res --
The primitive to call the IAP routines. Interrupts are disabled for the duration of the IAP call.

: IAPprep \ start end -- res
Prepare sectors for erase/write.

: IAPcopy \ Rsrc Fdest len -- res
Copy/program len bytes from Rsrc in RAM to Fdest in Flash.

: IAPerase \ start end -- res
Erase the inclusive range of sectors.

: IAPcheck \ start end -- res
Blank check the inclusive range of sectors.

: IAPcompare \ Rsrc Fdest len -- res
Compare len bytes from Rsrc in RAM to Fdest in Flash.

: IAPbootver \ -- bootver
Return the 16 bit boot code version. The high byte is the major version and the low byte is the
minor version.

: IAPpartno \ -- part#
Return the Philips part number.

20.1 Gotchas

If you have problems with the TAP routines, check the bootloader version using the Philips ISP
software or by typing

IAPBootVer .dword

which will give something of the form:

104 MPE Forth for TinitARM

0000:xxyy

xx is the major version number and yy is the minor version number. If this number is less than
0000:0134 (hexadecimal) or 1.52 (decimal) you should update the bootloader using ISP software
version 2.2.0 or greater. These are available on the MPE CDs and from

www.semiconductors.philips.com
/files/products/standard/microcontrollers/utilities/
philips_flash_utility.zip
1pc2000_bl_update.zip

If you still have problems, use the Philips ISP software to erase the whole of the Flash, and then
reinstall an appropriate .HEX file. Remember to convert the latest .IMG file to .HEX.

Chapter 21: LPC2000 Flash tools 105

21 LPC2000 Flash tools

These tools are provided for applications which reserve part of the Flash for data. This code
uses the IAP routines in IAP210z.fth.

N.B. An erase causes the whole of the sector at that address to be erased.

N.B. All writes to Flash must be from RAM as the Flash is unavailable at the time any part is
being written.

21.1 Flash primitives

Although some of these routines are not the most efficient for the LPC2000 series, they are
designed to be easily expanded for future LPC2xxx parts with as yet unknown sector sizes.

Sector tables contain the number of sectors and starting offset of each sector, plus a dummy start
address which enables the size of the last sector to be calculated. The boot block sector is not
included in the table. The sector table is given by SecTab which is defined in FlashTables.fth.

: SectorN \ n -- addr len
Convert sector number (zero based) to base address and length

: FindSecN \ addr -- n
Find the sector number containing address addr. If addr is outside the internal Flash range, n
is set to -1.

.src/dest \ src dest -- src dest
Display the addresses and contents of the source and destination.

21.2 Flash driver

cell buffer: FlDest \ —-- addr
Holds next destination address

cell buffer: #PrgErrs \ -- addr
Holds error count

: Progh12 \ src dest --
Program 512 bytes at src to dest. Increment error counter on error.

(EraseFlash) \ dest dlen --
Erase the flash for the given range. Note that complete sectors in the range will be erased. If
you want to write partial sectors, check that they contain $FF in all bytes before programming
in order avoid having to erase them first.

(ProgFlash) \ src dest len --
Write len bytes from memory at src to Flash at dest. Note that the Flash is assumed to be
erased, and that no verification is performed except when each byte is programmed. DEST is
forced to a 512 byte boundary and LEN is rounded up to the next 512 byte unit. SRC must be
on a word boundary.

(VerifyFlash) \ src dest len --
Verify len bytes from memory at src to Flash at dest.

: ProgramFlash \ src dest len --

106 MPE Forth for TiniARM

Using the RAM memory buffer at src, program the Flash at dest with len bytes. The relevant
Flash sectors are erased, the Flash is programmed, and the result verified.

Chapter 22: Philips LPC2xxx Reflashing 107

22 Philips LPC2xxx Reflashing

22.1 Introduction

If you destroy the application in the internal Flash, you must use the Philips ISP loader to
reload an Intel Hex file supplied on the ARM Stamp CD. A suitable baud rate is 38400 baud.
To use this, ensure that port P0.14 is low. There is a link on the board that (when installed)
enforces this. Then reset the board and use the Philips loader. Then close the Philips loader.
Ensure that the P0.14 link is removed before resetting the board. Then connect using AIDE’s
PowerTerm or HyperTerm.

Once the Forth system is running again, you can use the word REFLASH (--) to download a
new binary image. Note that REFLASH only handles binary memory image files. These should
transferred using the XModem 128 (checksum) protocol. If you are using AIDE with the file
server enabled, a file selection dialog will appear automatically after you have executed REFLASH.

The LPC2xxx can only be reflashed from an application by a program running from RAM. A
separate application built by a control file REPROG\REPROG*.CTL is used to do this. A
binary image REPROG*.IMG is inserted into the application. When required, the code is copied
into the internal RAM and executed from RAM.

Return is by rebooting the system. The contents of the internal RAM and Flash are destroyed,
therefore any data that must be preserved should be saved externally to the chip. Alternatively,
modify the reprogramming code to use the last sector to hold data to be preserved.

22.2 Code in main application

The layout of the RAM code is defined in the source file InitRp210z.fth. This defines the first
cell as the Forth word to execute.

create reprog2xxx.img \ -- addr
The start address of the reprogramming code

data-file %HwDir}%\reprog\reprog210x.img equ /reprog \ -- len
The length of the reprogramming code loaded into the dictionary.

data-file %HwDir)%\reprog\reprog213x.img equ /reprog \ -- len
The length of the reprogramming code loaded into the dictionary.

$40000200 equ reprogrun \ -- addr

The run time address of the reprogramming code. This must match the start address of the
CDATA section defined in REPROG210xz.CTL, and that section must not overlap the run-time
stacks and user area.

0 value ReflashDev \ -- addr

Holds 0 or a UART base address. If set to 0, the reflash code will use the default device for
the XModem transfer. Otherwise it will use the value here as the base address of the LPC2xxx
UART to use. N.B. No effect on the MPE USB Stamp.

: callit \ xt —-
Load the reprogramming code and execute the xt.

: reflash \ -- ; no exit

108 MPE Forth for TiniARM

Copies the reprogramming code to the run-time address and executes it.

: CopyFlash \ src dest len --
Copy the flash. The parameters are as for CMOVE. The process is repeated until there are no
errors, and the system is then rebooted.

Chapter 23: Rebooting the CPU 109

23 Rebooting the CPU

The word REBOOT permits the system to be reset by disabling all interrupts and activating
the watchdog.

: reboot \ —-
Reboots the CPU by activating the watchdog.

110 MPE Forth for TinitARM

Chapter 24: Creating turnkey applications 111

24 Creating turnkey applications

24.1 Introduction

Applications compiled on the Stamp boards are compiled into RAM. This area of RAM can be
saved in the serial EEPROM (USB Stamp, 16k or 64k bytes) or CPU Flash (e.g. TiniARM)
and reloaded at power up. Optionally a word can be executed at power up, so making a turnkey
application.

An application is saved by the word TURNKEY (xt|0 --) which saves a header and the compiled
image, including previously compiled code and data, into the serial EEPROM or Flash. If you
do not want a word to run at power up, a value of 0 is used instead of an XT.

> MyApp turnkey \ will execute MyApp at power up
0 turnkey \ will just restore the image

At power up, the image is copied into RAM. If the internal CRC check fails, the interactive
Forth is started but may eventually crash if the image is badly corrupted. If a turnkey word has
been set, it will be executed. If the turnkey word returns, the interactive Forth is started.

If you want to remove a previously compiled image, do this with EMPTY (--), which resets the
header block

$00010000 equ AppFlash \ -- addr

Serial Stamp, e.g. TiniARM: Base address of the Flash area where RAM programs are saved.
The address here is only used if it has not already been defined. Note that this address should
be at the start of a Flash sector.

24.2 Saving applications
: Empty \ -
USB Stamp: Erase the header information in the serial EEPROM. This does not modify the

software in RAM. In order to run without the previously loaded software use EMPTY and then
REBOQT.

: Empty \ --
Serial Stamp, e.g. TintARM: Erase the header information in the LPC2106 Flash at AppFlash.

This does not modify the software in RAM. In order to run without the previously loaded
software use EMPTY and then REBOOT.

: Proglen \ -- len
Gives the length of the compiled application.

CommitXt constant ProgStart \ -- addr
Returns the start address of the RAM program

: +CRC16 \ crc b -- crc’
Update CRC16 for one byte

: genCRC \ crc addr len -- crc’
Generate a CRC for a block of memory, given an initial CRC value.

: AppCRC \ -- crc

112 MPE Forth for TinitARM

Generate the application CRC.

: KernelCRC \ -- crc

Generate the kernel CRC for the first 64k bytes of Flash.

: Commit \ xt|0 --

Prepares the RAM header for saving.

: SaveApp \ —-

USB Stamp: Write the RAM image to the serial EEPROM.

: SaveApp \ -~

Serial Stamp, e.g. TiniARM: Write the RAM image to the Flash at 0001:0000h. The ticker
interrupt is halted during this operation.

cell buffer: NoReload \ -- addr

Set this location to $5555AAAA to prevent application reload at COLD or reboot. This location
is not preserved across power-down.

: TurnKey \ xt|0 —-

Initialise the program header and save the application to the serial EEPROM. An XT of 0 will
cause the image to be reloaded without any start up action.

24.3 Reloading and starting applications

: Reload \ —-
USB Stamp: Reload an application from the serial EEPROM.
: CheckApp \ -- flag ; true if ok

Returns non-zero if the CRC of the application in RAM is good.

: CheckKernel \ -- flag ; true if ok
Returns non-zero if the CRC of the kernel matches the kernel CRC saved in the application.

: 7Restart \ —-

Reload the application, check the CRC, and execute a correct application if required. This word
is executed at power up. If the application cannot be installed, a warning message is issued and
further reloads are inhibited. The Forth text interpreter then starts.

24.4 Cross Compiler Compatibility

1 equ \x —-; —— %

A synonym for CONSTANT, useful when interactively compiling code that will later be cross
compiled.

: buffer: \ size -- ; -- addr
Create a buffer of the given size. At run-time the address is returned.

: or! \ mask addr --
OR the mask with the data at addr

: and! \ mask addr --
AND the mask with the data at addr
: bic! \ mask addr --

AND the inverted mask with the data at addr, so that any 1’ bits in mask are cleared at addr.

Chapter 24: Creating turnkey applications 113

24.5 Gotchas

Once a turnkey application has started, there is no way back to the interactive Forth for de-
bugging unless you provide it. It is common practice to provide a backdoor for engineering and
maintenance access.

Because of supply problems, the first ten engineering sample boards only have 16k of serial
EEPROM. Do not try to save more than 16k in these systems.

Because the cold chain mechanism is executed before applications are reloaded into RAM, ap-
plication programs may not use the word ATCOLD. Applications must explicitly perform any
initialisation they require.

The saved image is a snapshot of RAM, including all system variables. If your application
requires different initial conditions, it must explicitly set these variables.

24.6 Application License

This software is provided for use with boards manufactured by MicroProcessor Engineering Ltd
(MPE) and New Micros Inc (NMI) only. If you want to run this code on other hardware, you
MUST obtain a license from MicroProcessor Engineering Ltd.

Your application may provide access to the open Forth for what we term "engineering and
maintenance access" only. If you need your clients to be able to do more than this, e.g. to
create new words themselves, you must obtain a license from MicroProcessor Engineering Ltd.
In many low volume cases, this just consists of purchasing development systems rather than
production boards. The advantage of this is that your clients receive all the latest tools and
documentation. You can also choose to purchase an MPE cross compiler which enables you to
add to and modify the contents of the Flash image, as well as producing smaller and much faster
code.

Note that none of files on the development distribution may be redistributed without permission.
If you have any questions or concerns about the licenses, please contact MPE directly.

114 MPE Forth for TinitARM

Chapter 25: Examples directory 115

25 Examples directory

The EXAMPLES directory contains much useful code, ranging from simple tools to fully doc-
umented extensions. The best way to use the EXAMPLES directory is to browse through the
source code. If you want to modify the code, we recommend that you move it to become part
of your own application directory structure.

Additional examples may have been added since this manual was generated. Browse the EX-
AMPLES folder to see what is there.

25.1 Main directory

The following is a list of files as of November 2002.

CALENDAR.FTH
A perpetual calendar by Christophe Lavarenne. A choice of calendars is provided.

DOUBLES .HI
This file implements double and some quad precision number support using the
primitives of PowerForth and high level definitions. To obtain better performance
some definitions should be coded. These are indicated in the source code.

HEXPAD.FTH
Keypad read routine for hex matrix keypad. The example was written for an 8051
port using four input bits and four output bits.

MATH.FTH Miscellaneous math functions.

PRIMES.FTH
Eratosthenes sieve - simple prime benchmark.

SINCOS.FTH
Integer trig words from Kurt Heinz at Synics. These words provide a simple imple-
mentation of sine, cosine, and tangent functions.

TESTCODE.FTH
A test harness for verifying the stack effect of of Forth words and phrases.

UNIXTIME.FTH
Maintains a Unix style seconds counter.

25.2 Contributions subdirectory

This directory contains code contributed by users for others to use, and MPE thanks the con-
tributors.

The contents of this directory are untouched by MPE who provide no warranty at all on this
code. Sorry about that.

AD.FTH 68HC11 A/D handler.

CW.FTH This program will display text in CW (Morse Code) upon either the system’s console
or the system’s LEDs.

DATES.FTH
Conversions between calendar date and Julian day number from ACM# 199. Forth
Scientific Library Algorithm #22

116 MPE Forth for TinitARM

HIDEN.FTH
This code replaces REQUEST and SIGNAL in the MPE multitasker because they

allow a task to lock a semaphore multiple times.

IEEE.FTH Converts between MPE software floating point format for 32 bit systems and IEEE
32 bit format.

LANDER.FTH
Lunar Landing Simulation.

25.3 I2C subdirectory

I2CLOAD.BLD
Build file for other 12C files.

BCD.FTH BCD to binary conversion and back

I2CBASE.FTH
12C primitives. This file requires an 12C bit-banging I/O driver to have been com-
piled.

I2CNOTES.DOC
I12C documentation in Word format.

DEVICES\8574DRV.FTH
Driver for an 8574.

DEVICES\8583DRV.FTH
Driver for an 8583.

DRIVERS\I2CVFXDRV.FTH
Bit banging parallel port driver for VFX Forth for Windows.

25.4 SPI subdirectory

SPINOTES.DOC
SPI documentation in Word format.

SPILOAD.BLD
Build file that pulls in other SPI files.

PPDRV.FTH
PC printer port access for VFX Forth for Windows.

SPIVFXDRV.FTH
SPI primitives for VFX Forth for Windows. Requires PPDRV.FTH.

SPIBASE.FTH
SPI byte read and write primitives. A lower level driver is required.

25LCDRV.FTH
Driver for a Microchip 25LC series SPI EEPROM.

Chapter 26: Frequently Asked Questions 117

26 Frequently Asked Questions

26.1 Where are the hardware manuals?

At the New Micros web site on the TiniARM pages, don’t forget the Dev board manual from
the Dev board link.

http://www.newmicros.com

26.2 Setting up AIDE for TiniARM

AIDE and the cross compiler are separate programs. To cross compile to a TiniARM image,
use AIDE and the IDE -> External Tools dialog, use Next Tool to find the USB Stamp, then
Copy Tool to produce a new one and change USBstamp.ctl to SerStamp.ctl and USB Stamp
(top entry) to TiniARM. Click Apply and then OK. You will find a new button on the toolbar
with a Tooltip that says TiniARM. Click this to cross compile it. It will produce SerStamp.img.
Look at SerStamp.ctl to see what files are compiled. If the TiniARM has the MPE Forth
already installed, configure PowerTerm to 115200 baud,8,N,1 and connect to the board. Type
REFLASH and follow the instructions to download the new binary image to the board. When
it asks you if you want to reboot and you answer ’y’, after reboot the new image is running.

26.3 Quick guide to compile and REFLASH.

e Start AIDE.

e Click on Tools - TinitARM. The Tool Capture Display will show the Cross Compiling run.

e Open P... (PowerTerm) - be sure setting is 115200,8,N,1 and board is connected. Enable the
file server in order to be able to download source files by typing INCLUDE <filename>.

e Type REFLASH.

e If a file select dialog does not pop up, click on Xt (Send File) "Erasing done... Start Xmodem
TX" will be shown.

e Select SERSTAMP.IMG Blocks of compiled new system will be downloaded.

e "Press R to reboot.." - Press R. The new build will be shown.

118 MPE Forth for TinitARM

	Introduction
	About Forth
	About the manual
	If disaster strikes
	Using other terminal emulators.
	Technical support
	Licensing

	ARM code definitions
	Notes
	Register usage
	Configuration
	Logical and relational operators
	Control flow
	Arithmetic
	Stack manipulation
	String and memory operators
	Miscellaneous words
	Portability helpers
	Runtime for VALUE
	Defining words and runtime support
	Structure compilation
	Branch constructors
	Main structure compilers
	Miscellaneous

	High level kernel KERNEL62.FTH
	User variables
	System Constants
	System VARIABLEs and Buffers
	Variables

	Deferred words
	Predefined Vocabularies
	Vectored I/O handling
	Introduction
	Building a vector table
	Generic I/O words

	String and memory operations
	Dictionary management
	String compilation
	Pre-ANS Exception handlers
	ANS words CATCH and THROW
	Example implementation
	Example use
	Gotchas

	Formatted and unformatted i/o
	Setting number bases
	Numeric output
	Numeric input

	String input and output
	Source input control
	Text scanning
	Miscellaneous
	Wordlist control
	Control structures
	Target interpreter and compiler
	Compilation and Caches
	Startup code
	Cold chain
	The COLD sequence

	Kernel error codes
	Differences between the v6.1 and 6.2 kernels
	Error handling
	Terminal input buffer and ACCEPT.

	Target VALUE and local variables
	Development tools
	Debugging tools
	Implementation dependencies
	Miscellaneous
	Stack checking
	Assertions

	Interrupt handlers
	Configuration
	Interrupt management
	SWI handler
	Support for complex abort handlers
	Undefined instruction handler
	Simple UNDEF handler
	Complex UNDEF handler

	Prefetch Abort handler
	Simple PABORT handler
	Complex PAbort handler

	Data Abort handler
	Simple DAbort handler
	Complex DAbort handler

	Reserved (26 bit address exception) handler
	Generic IRQ handler
	Generic FIQ handler
	AT91 IRQ and FIQ handlers
	Samsung S3C4510 IRQ and FIQ handlers
	ARM PL190 IRQ and FIQ handlers

	Character Queues
	Queue data structure
	Queue primitives

	Serial driver
	Configuration
	Serial interrupt service routines
	Initialisation
	Serial primitives
	Generic i/o assignments
	Forth Stamp specific code

	LPC software I2C driver
	Introduction
	Timing
	I2C bit functions

	I2C generic primitives
	Software Floating Point
	Introduction
	Source code
	Entering floating-point numbers
	The form of floating-point numbers
	Creating variables
	Accessing variables
	Creating constants
	Using the supplied words
	Calculating sines, cosines and tangents
	Calculating arc sines, cosines and tangents
	Calculating logarithms
	Calculating powers

	Degrees or radians
	Displaying floating-point numbers
	Changes from v6.0 to v6.1
	32 bit targets: software floating point
	16 bit targets: software floating point

	Glossary
	Basic stack and memory operators
	Floating point defining words
	Type conversions
	Arithmetic
	Relational operators
	Rounding
	Miscellaneous
	Floating point output
	Floating point input
	Trigonmetric functions
	Power and logarithmic functions

	ARM coded primitives

	Periodic Timers
	The basics of timers
	Considerations when using timers
	Implementation issues
	Timebase glossary

	Time Delays
	LPC210x Ticker Interrupt
	Configuration equates
	Ticker interrupt handler
	Time base extensions

	ARM multitasker
	Configuration - normally performed earlier
	TCB data structure layout
	Task handling primitives
	Event handling
	Message handling
	Task structure management
	Semaphores
	TASK and START:
	Debugging tools

	Vocabulary and wordlist tools
	ROM PowerForth utilities
	Introduction
	Compiling text files
	The required files
	Compiling a specified text file

	XMODEM binary image download
	XMODEM binary image upload
	IODEF.FTH
	AIDE support

	Miscellaneous
	INCLUDE source code from AIDE
	Simple source file loader

	XMODEM Receiver and Transmitter
	Introduction
	Words in XmodemTxRx.fth
	Configuration
	Constants and variables
	Common code
	XMODEM transmission
	XMODEM reception
	Defaults

	Philips LPC2xxx IAP routines
	Gotchas

	LPC2000 Flash tools
	Flash primitives
	Flash driver

	Philips LPC2xxx Reflashing
	Introduction
	Code in main application

	Rebooting the CPU
	Creating turnkey applications
	Introduction
	Saving applications
	Reloading and starting applications
	Cross Compiler Compatibility
	Gotchas
	Application License

	Examples directory
	Main directory
	Contributions subdirectory
	I2C subdirectory
	SPI subdirectory

	Frequently Asked Questions
	Where are the hardware manuals?
	Setting up AIDE for TiniARM
	Quick guide to compile and REFLASH.

