1. ADVANCED PROGRAMMING

1.1.IsoPod, MinPod, TinyPod, PlugaPod Memory Map

DATA MEMORY PROGRAM MEMORY
0000 Data RAM 0000 Program
0292 (Kernel) 53FF Flash

(Kernel)
0293 Data RAM
07FF (User)
0800
OBFF reserved
0C00

OFFF peripherals

1000 Data Flash
17FF (SAVE-
RAM)

1800 Data Flash
1FFF (User)

5400 Program
7CFF Flash
(User)

7D00 User Interrupt
7DFF Vectors

7E00 Program RAM

* Program RAM is used by 7FDF (User)

the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

7FEOQ Program RAM
7FFF (Kernel*)

1.2. ServoPod Memory Map

DATA MEMORY

0000 Data RAM

0292 (Kernel)
0293 Data RAM
OFFF (User)
1000

17FF peripherals

1800
1FFF reserved

2000 Data Flash
2FFF (SAVE-
RAM)

3000 Data Flash
3FFF (User)

* Program RAM is used by

the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

PROGRAM MEMORY
0000 Program
55FF Flash
(Kernel)
5600 Program
7CFF Flash
(User)
7D00 User Interrupt
7DFF Vectors
8000 Program
EFFF Flash
(User)
F000 Program RAM
F7DF (User)
F7EO0 Program RAM
F7FF (Kernel*)

1.3. Earlier IsoMax Kernels Memory Maps

1.3.1. IsoMax v0.3 Memory Map

DATA MEMORY PROGRAM MEMORY
0000 Data RAM 0000 Program
04E6 (Kernel) 31FF Flash

(Kernel)
04E7 Data RAM
07FF (User)
0800
OBFF reserved
0C00

OFFF peripherals

1000 Data Flash
1BFF (Kernel)

1C00 Data Flash
1FFF (User)

3200 Program
7DFF Flash
(User)

7E00 Program RAM

* Program RAM is used by 7FDF (User)

the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

7FEO Program RAM
7FFF (Kernel*)

1.3.2. IsoMax v0.6 Memory Map

DATA MEMORY
0000 Data RAM
0245 (Kernel)
0246 Data RAM
07FF (User)
0800
OBFF reserved
0C00 .

OFFF peripherals
1000 Data Flash
17FF (SA VE-
RAM)
1800 Data Flash
1IFFF (User)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

PROGRAM MEMORY
0000 Program
13FF Flash

(Core)
1400 Program
IFFF Flash
(User)
2000 Program
3FFF Flash
(User)
‘803 and
‘805 only
4000 Program
7DFF Flash
(Kernel)
7E00 Program RAM

TFDF (User)
7FEO Program RAM
TFFF (Kernel*)

1.3.3. IsoMax v0.6 Memory Map — DSP56807

DATA MEMORY PROGRAM MEMORY
0000 Data RAM 0000 Program
0245 (Kernel) 13FF Flash

(Core)
0246 Data RAM
OFFF (User) 1400 Program
3FFF Flash
1000 (User)

17FF peripherals

1800

IFFF reserved
4000 Program
2000 Data Flash 7DFF Flash
2FFF (SA VE- (Kernel)
RAM)
3000 Data Flash
3FFF (User)
8000 Program
EFFF Flash
(User)

F000 Program RAM

* Program RAM is used by F7DF (User)

the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

F7E0 Program RAM
F7FF (Kernel*)

1.4. Starting IsoMax State Machines

When the IsoPod is reset, it disables all running state machines. You must explicitly start
your state machines as part of your application -- usually, in your autostart code. There
are two ways to do this: with INSTALL, or with SCHEDULE-RUNS.

1.4.1. Using INSTALL to start a State Machine

From IsoMax version 0.36 onward, the preferred method of starting state machines is
with INSTALL. After you have defined a state machine, you can start it by typing

state—-name SET-STATE
INSTALL machine-name

Note that you must use SET-STATE to specify the starting state of the machine first.
This is because INSTALL will start the machine immediately. To start more machines,
simply INSTALL them one at a time:

state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3
etc.

Normally,' the state machine will start running immediately at the default rate of 100 Hz.
SET-STATE and INSTALL can be used even while other state machines are running,
that is, INSTALL will add a state machine to an already-running list of state machines.

At present, up to 16 state machines can be INSTALLed. Attempting to INSTALL more
than 16 machines will result in the message "Too many machines." To install more
machines, you can use UNINSTALL or define a MACHINE-CHATIN (both described
below).

SET-STATE and INSTALL can be used interactively from the command interpreter, or
as part of a word definition.

1.4.2. Removing a State Machine

INSTALL builds a list of state machines which are run by IsoMax. UNINSTALL will
remove the last-added machine from this list. You can use UNINSTALL repeatedly to
remove more machines from the list, in a last-in first-out order. For example:

' The commands COLD, SCRUB, and STOP-TIMER will halt [soMax. The command SCHEDULE-RUNS
will override the INSTALLed state machines and dedicate IsoMax to running a particular machine chain.

INSTALL machine—-name-1

(SET-STATE commands have been omitted for clarity)
INSTALL machine-name-2
INSTALL machine-name-3

UNINSTALL ...removes machine-name-3

UNINSTALL ..removes machine-name-2
UNINSTALL ..removes machine-name-1
UNINSTALL ...removes nothing

If there are no state machines running, UNINSTALL will simply print the message "No
machines."

To remove all the INSTALLed state machines with a single command, use NO-
MACHINES.

1.4.3. Changing the IsoMax Speed

When the IsoPod is reset, [IsoMax returns to its default rate of 100 Hz -- that is, all the
state machines are performed once every 10 milliseconds. You can change this rate with
PERIOD. The command

n PERIOD

will set the IsoMax period to "n" cycles of a 5 MHz clock. Thus,
DECIMAL 5000 PERIOD ...will execute state machines once per millisecond
DECIMAL 1000 PERIOD ...will execute state machines every 200 microsec.

...and so on. You can specify a period from 10 to 65535.> (Be sure to specify the
DECIMAL base when entering large numbers, or you may get the wrong value.) The
default period is 50000.

1.4.4. Stopping and Restarting IsoMax

Certain commands will halt [soMax processing:

the COLD command
the SCRUB command

? Note, however, that very few state machines will be able to run in 2 microseconds (corresponding to 10
PERIOD). Ifyou specify too small a PERIOD, no harm will be done, but IsoMax will "skip" periods as
needed to process the state machines.

This is necessary because either COLD or SCRUB can remove state machines from the
IsoPod memory.® You can also halt soMax manually with the command STOP-TIMER.

In all these cases, the timer that runs IsoMax is halted. So, even if you INSTALL new
state machines, they won't run. To restart [soMax you should use the command
ISOMAX-START. This command will

a) Remove all installed state machines, and
b) Start [soMax at the default rate of 100 Hz.

Since TSOMAX-START removes all installed state machines, you must use it before you
use INSTALL. For example:

STOP-TIMER

ISOMAX-START

state-name-1 SET-STATE
INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

Resetting the IsoPod does the same as TSOMAX-START: it will remove all installed state
machines, and reset the timer to the default rate of 100 Hz.

1.4.5. Running More Than 16 Machines

INSTALL can install both state machines and machine chains. A "machine chain" is a
group of state machines that is executed together. Machine chains, like state machines,
are compiled as part of the program:

MACHINE-CHAIN chain-name
machine-name-1
machine-name-2
machine-name-3

END-MACHINE-CHAIN

This example defines a chain with the given name, and includes the three specified state
machines (which must already have been defined). A machine chain can include any
number of state machines.

You must still set the starting state for each of the state machines in a machine chain,
before you install the chain. So, you could start this example chain with:

? The command FORGET can also remove state machines from memory. Be very careful when using
FORGET that you don't remove an active state machine; or use STOP-TIMER to halt IsoMax first.

state-name-1 SET-STATE ...a state in machine-name-1
state-name-2 SET-STATE ...a state in machine-name-2
state-name-3 SET-STATE ...a state in machine-name-3
INSTALL chain-name

You can of course UNINSTALL a machine chain, which will stop all of its state
machines.

1.4.6. Using SCHEDULE-RUNS
Prior to IsoMax version 0.36, the preferred method of starting state machines was with
SCHEDULE-RUNS." SCHEDULE-RUNS worked only with machine chains, and required
you to specify the [soMax period when you started the machines:

EVERY n CYCLES SCHEDULE-RUNS chain-name

SCHEDULE-RUNS is still available in [soMax, to allow older IsoMax programs to be
compiled. However, you should be aware that using SCHEDULE-RUNS will disable any
machines started with INSTALL. SCHEDULE-RUNS replaces any previously running
state machines -- including any previous use of SCHEDULE-RUNS -- and there is no
"uninstall" function for it. After using SCHEDULE-RUNS, the only ways to "reactivate"
the INSTALL function are

a) use the TSOMAX-START command, or
b) reset the IsoPod

ISOMAX-START will disable any machine chain started by SCHEDULE-RUNS, and will
re-initialize IsoMax. You can then INSTALL state machines as described above.

You can use the PERTOD command to change the speed of a machine chain started with
SCHEDULE-RUNS.

1.4.7. Autostarting State Machines

When the IsoPod is reset, all state machines are halted. (Strictly speaking, the IsoMax
timer is running, but the list of installed state machines is empty.) To automatically start
your state machines after a reset, you must write an autostart routine, which uses SET -
STATE and INSTALL to start your machines. For example:

MAIN
state-name-1 SET-STATE
INSTALL machine—-name-1

* Some versions of IsoMax prior to version 0.36 have a different implementation of INSTALL. That
implementation does not work as described here, so for those versions of [soMax we recommend you use
SCHEDULE-RUNS.

state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

... more startup code . . .
... application code . . .

; EEWORD

SAVE-RAM
HEX 7C00 AUTOSTART MAIN

In this example, the word MAIN is executed when the IsoPod is reset. The first thing it
does is to install three state machines. Note that these machines will begin running
immediately. If you need to do some initialization before starting these machines, that
code should appear before the first INSTALL command.

Refer to "Autostarting an IsoMax Application" for details about using SAVE-RAM and
AUTOSTART.

1.5.IsoMax State Machine Language Reference

This illustrates the different options for defining state machines, states, and state
transitions.

1.5.1. Defining State Machines

A state machine is defined by name:

MACHINE <name-of-machine>

If the machine will be moved to Flash ROM, the MACHINE declaration must be
immediately followed by EEWORD:

MACHINE <name-of-machine> EEWORD

1.5.2. Declaring States

Once a state machine has been defined, all of the states which will be part of that machine
must be named:

ON-MACHINE <name-of-machine>
APPEND-STATE <name-of-new-state>
APPEND-STATE <name-of-new-state>

APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG

The last example above illustrates a debugging option which is available for states. If
WITH-VALUE ... AT-ADDRESS are specified, the value ‘n’ will be stored at address ‘a’
when a transition is made fo this state.’

If the state machine will be moved to Flash ROM, each state declaration must be
immediately followed by EEWORD, thus:

ON-MACHINE <name-of-machine>
APPEND-STATE <name-of-new-state> EEWORD
APPEND-STATE <name-of-new-state> EEWORD

APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG
EEWORD

1.5.3. Defining States

After the states have been named, the transitions between the states can be defined:

> This value is actually stored by either TO-HAPPEN, THIS-TIME, or NEXT-TIME, when they are used
by another state to select this as the new state. The tag value is not stored when SET-STATE is used.

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME

<boolean computation> must be a fragment of procedural (Forth) code which leaves a
true/false (nonzero/zero) condition on the stack. If the result of this computation is true,
the actions following CAUSES (a compound action and a new state) will be performed.

<compound action> 18 an optional fragment of procedural (Forth) code which is
performed when the transition condition is satisfied, and before the state transition
actually takes place. This must be stack-neutral (the completed action must take nothing
from, and leave nothing on, the stack).

Usually when a transition is made to a new state, that state will be evaluated -- that is, all
of its CONDITION clauses will be examined -- on the next I[soMax cycle. This is the
safest approach, and ensures that all state machines receive adequate service. This is
what happens when you specify the next state TO-HAPPEN or NEXT-TIME. (TO-
HAPPEN is a synonym for NEXT-TIME).

There may be very special cases when it is important to evaluate the new state
immediately upon a transition to that state. To achieve this you specify the next-state-
name THIS-TIME. This is a hazardous practice, however, since it’s very easy to
construct a loop of states that will never terminate. THIS-TIME is strongly discouraged,
and should only be used when absolutely necessary, and with great care.

If the state machine will be moved to Flash ROM, each transition definition must be
immediately followed by IN-EE (not EEWORD), thus:

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN IN-EE

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME IN-EE

IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME IN-EE

1.5.4. Defining Input Conditions
Often the boolean condition in a state transition will simply involve testing an input pin,

an I/O register, or a memory location for a bit to be set or cleared. To make this
programming easier, you can define an input trinary:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary tests the value at the specified address, and returns a true/false result. To be
precise: the value at address “a” is fetched, and logically ANDed with the TEST-MASK.
This result is logically XORed with the DATA-MASK. If the result is nonzero, a true flag
is left on the stack; if the result is zero, a false flag is left.

You should think of this as follows: the TEST-MASK specifies which bit is of interest.
DATA-MASK specifies an optional inversion. Although these will usually act on a single
bit, you can certainly have masks with multiple bits. Just remember that if any bit in the
AND/XOR result is nonzero, the result will be logically “true.”

TEST-MASK, DATA-MASK, and AT-ADDRESS can be specified in any order. So, the
following are equivalent:
DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT

DEFINE <name> AT-ADDRESS <a> TEST-MASK <n> DATA-MASK <m> FOR-INPUT
DEFINE <name> DATA-MASK <m> TEST-MASK <n> AT-ADDRESS <a> FOR-INPUT

Input trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the boolean computation in a state transition. They
are merely provided as a convenience.

An input trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT
EEWORD

1.5.5. Defining Output Actions

Many actions involve setting or clearing a bit in an I/O register or a memory location. To
make this programming easier, you can define an output trinary in one of two forms:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AND-MASK <n> XOR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary sets and clears bits at the specified address.

The most commonly used output action is SET/CLR. When performed, any “1” bits in
the SET-MASK will be set at address a. Any “1” bits in the CLR-MASK will be cleared
at address a. You can think of this as lists of bits to be set and bits to be cleared in the

register (or memory location). If you need to only set or only clear bits, the unneeeded
mask should be zero. For example, to set the LSB at address $F00, you would use

DEFINE <name> SET-MASK 1 CLR-MASK O AT-ADDRESS HEX O0FO0 FOR-OUTPUT

Avoid having the same bit in both the SET-MASK and the CLR-MASK; the result will be
indeterminate.’

An alternative action is AND/XOR. This can be used to change the state of bits,
depending on their current value. When performed, the AND-MASK is applied to the
value at address a. Then the XOR-MASK is applied to this result. The final result is
stored back to address a. You can thus set, clear, and toggle bits in one operation:

AND-MASK bit XOR-MASK bit function

0 0 clears the bit

0 1 sets the bit

1 0 leaves the bit unchanged
1 1 toggles (inverts) the bit

Remember that the AND is always applied before the XOR. Use this form with care: it is
very easy to clear bits inadvertently with a badly chosen AND-MASK.

SET-MASK, CLR-MASK, and AT-ADDRESS can be specified in any order. The
following are equivalent:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AT-ADDRESS <a> SET-MASK <n> CLR-MASK <m> FOR-OUTPUT
DEFINE <name> CLR-MASK <m> SET-MASK <n> AT-ADDRESS <a> FOR-OUTPUT

Likewise, AND-MASK, XOR-MASK, and AT-ADDRESS can be specified in any order.
But you cannot mix SET/CLR masks with AND/XOR masks.

Output trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the compound action in a state transition. They are
merely provided as a convenience.

An output trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
EEWORD

1.5.6. Defining Procedural Actions

For either test conditions or output actions, you may wish to specify procedural code.
There is a form of the trinary declaraction that allows this:

® Currently, on the DSP5680x family, these operations are performed by reading memory, applying the
logical operations, and then writing the result back to memory. But there is no guarantee that future
versions of [soMax, or versions for other processors, will be implemented in precisely the same way.

DEFINE <name> PROC ...procedural code... END-PROC

When used to specify a test condition, the procedural (Forth) code should leave a
true/false value on the stack. When used to specify an output action, the code should
expect nothing from the stack, and when finished, leave nothing on the stack.

PROC:s can be used within state transitions and in procedural (Forth) code. You are not
required to use PROCs; they are provided as a convenience.’

These also can be moved to Flash ROM with EEWORD:

DEFINE <name> PROC ...procedural code... END-PROC EEWORD

"DEFINE ... PROC ... END-PROC simply creates a normal Forth high-level (“colon”) definition.

1.6. IsoMax Performance Monitoring

The IsoMax system is designed to execute user-defined state machines at a regular
interval. This interval can be adjusted by the user with the PERTIOD command. But how
quickly can the state machine be executed? IsoMax provides tools to measure this, and
also to handle the occasions when the state machine takes “too long” to process.

1.6.1. An Example State Machine

For the purposes of illustration, we’ll use a state machine that blinks the green LED:®

LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_ GRN

ON-MACHINE SLOW_ GRN
APPEND-STATE SG_ON
APPEND-STATE SG_OFF

IN-STATE SG_ON

CONDITION CYCLE-COUNTER COUNT
CAUSES GRNLED OFF

THEN-STATE SG_OFF

TO-HAPPEN

IN-STATE SG_OFF

CONDITION CYCLE-COUNTER COUNT
CAUSES GRNLED ON

THEN-STATE SG_ON

TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW GRN

This machine will execute at the default rate of DECIMAL 50000 PERIOD, or 100 Hz
(since the clock rate is 5 MHz).

1.6.2. IsoMax Processing Time

Every time IsoMax processes your state machines, it measures the total number of clock
cycles required. This is available to you in three variables:

TCFAVG This is a moving average of the measured processing time.” It is reported
as a number of 5 MHz clock cycles.

¥ This example uses LOOPINDEX and INSTALL, and therefore requires IsoMax v0.36 or later.
? To be precise, TCFAVG is computed as the arithmetic mean of the latest measurement and the previous
average, i.e., Tavg[n+1] = (Tmeasured + Tavg[n]) / 2.

TCFMIN This is the minimum measured processing time (in 5 MHz cycles). Note
that this is not automatically reset when you install new state machines.
Therefore, after installing new state machines, store a large value in
TCFMIN to remove the old (false) minimum.

TCFMAX This is the maximum measured processing time (in 5 MHz cycles). This
is not automatically reset when you change state machines. Therefore,
after changing state machines, store a zero in TCFMAX to remove the old
(false) maximum.

To see this, enter the following commands while the SLOW GRN state machine is
running:

DECIMAL 50000 TCFMIN !
0 TCFMAX !

TCFAVG 2

TCFMIN 7

TCFMAX 7

You may see an AVG and MIN time of about 630 cycles, and a MAX time near 1175
cycles.'” With a 5 MHz clock, this corresponds to a processing time of about 126 usec
(average) and 235 usec (maximum). The average is near the minimum because most of
the time, the state machine is performing no action. Only once every 100 iterations does
the CYCLE-COUNTER expire and force a change of LED state.

TCFAVG, TCFMIN, and TCFMAX return results in the same units used by PERIOD
(counts of a 5 MHz clock). This means you can use TCFMAX to determine the safe lower
bound of PERIOD. In this case, you could set PERIOD as low as 1175 decimal, and
IsoMax would always have time to process the state machine.

1.6.3. Exceeding the Allotted Time

What if, in this example, PERIOD had been set to 1000 decimal? Most of the time, the
state machine would be processed in less time, but once per second the LED transition
would require more time than was allotted.

IsoMax will handle this gracefully by “skipping” clock interrupts as long as the state
machine is still processing. With PERIOD set to 1000, an interrupt occurs every 200
usec. When the LED transition occurs, one interrupt will be skipped, and so there will be
400 usec (2000 cycles) between iterations of the state machine.

If this happens only rarely, it may not be of concern. But if it happens frequently, you
may have a problem with your state machine, or you may have set PERIOD too low. To
let you know when this is happening, IsoMax maintains an “overflow” counter:

' These times were measured on an IsoPod running the v0.37 kernel. With no state machines
INSTALLed, the same kernel shows a TCFAVG of 88 cycles (17.6 usec). This represents the overhead to
respond to a timer interrupt, service it, and perform an empty INSTALL list.

TCFOVFLO A variable, reset to zero when IsoMax is started, and incremented every
time a clock interrupt occurs before IsoMax has completed state
processing. (In other words, this tells you the number of “skipped” clock
interrupts.)

You can see this in action by typing the following commands while the SLOW_GRN
state machine is still running:

TCFOVFLO ?

DECIMAL 1000 PERIOD
TCFOVFLO 7

TCFOVFLO 7

TCFOVFLO ?

50000 PERIOD
TCFOVFLO ?

TCFOVFLO ?

Be sure to type these commands, and don’t just upload them -- you need some time to
elapse between commands so that you can see the overflow counter increase. After you
change PERIOD back to 50000, the overflow counter will stop increasing.

1.6.4. Automatic Overflow Processing

If IsoMax overflows happen too frequently, you may wish your application to take some
corrective action. You could write a program to monitor the value of TCFOVFLO. But
IsoMax does this for you, and allows you to set an “alarm” value and an action to be
performed:

TCFALARM A variable, set to zero when IsoMax is started. If set to a nonzero value,
IsoMax will declare an “alarm” condition when the number of timer
overflows (TCFOVFLO) reaches this value. If set to zero, timer overflows
will be counted but otherwise ignored.

TCFALARMVECTOR A variable, set to zero when IsoMax is started. If set to a nonzero
value, IsoMax will assume that this is the CFA of a Forth word to be
executed when an “alarm” condition is declared. This Forth word should
be stack-neutral, that is, it should consume no values from the stack, and
should leave no values on the stack.

If set to zero, timer overflows will be counted but otherwise ignored.

Note that both of these values must be nonzero in order for alarm processing to take
place. Be particularly careful that TCFALARMVECTOR is set to a valid address; if it is set
to an invalid address it is likely to halt the IsoPod.

To continue with the previous example:

REDLED OFF

: TOO-FAST REDLED ON 50000 PERIOD ;
' TOO-FAST CFA TCFALARMVECTOR !

100 TCFALARM !

0 TCFOVFLO !

This defines a word TOO-FAST which is to be performed if too many overflows occur.
TOO-FAST will turn on the red LED, and will also change the IsoMax period to a large
(and presumably safe) value. The phrase ' TOO-FAST CFA returns the Forth CFA
of the TOO-FAST word; this can be stored as the TCFALARMVECTOR. Finally, the
alarm threshold is set to 100 overflows, and the overflow counter is reset.'’

Now watch the LEDs after you type the command

1000 PERIOD

The slow blinking of the green LED will change to a rapid flicker for a few seconds.
Then the red LED will come on and the green LED will return to a slow blink. This was
caused by TOO-FAST being executed automatically when TCFOVFLO reached 100.

1.6.5. Counting IsoMax Iterations

It may be necessary for you to know how many times IsoMax has processed the state
machine. IsoMax provides another variable to help you determine this:

TCFTICKS A variable, set to zero when IsoMax is started, and incremented on every
IsoMax clock interrupt.

The frequency of the IsoMax clock interrupt is set by PERIOD; the default value is 100
Hz (50000 cycles of a 5 MHz clock). With this knowledge, you can use TCFTICKS for
time measurement. With DECIMAL 50000 PERIOD, the variable TCFTICKS will be
incremented 100 times per second.

Note that TCFTICKS is incremented whether or not an IsoMax overflow occurs. That is,
it counts the number of IsoMax clock interrupts, not the number of times the state
machine was processed. To compute the actual number of executions of the state
machine, you must subtract the number of “skipped” clock interrupts, thus:

TCFTICKS @ TCFOVFLO @ -

" The test is for equality (TCFOVFLO=TCFALARM), not “greater than,” to ensure that the alarm condition
only happens once. The previous exercise left a large value in TCFOVFLO; if this is not reset to zero, the
alarm won’t occur until TCFOVFLO reaches 65535, “wraps around” back to zero, and then counts to 100.

1.7. Loop Indexes

A LOOPINDEX is an object that counts from a start value to an end value. Its name
comes from the fact that it resembles the I index of a DO loop. However,
LOOPINDEXes can be used anywhere, not just in DO loops. In particular, they can be
used in [soMax state machines to perform a counting function.

1.7.1. Defining a Loop Index
You define a LOOPINDEX just like you define a variable:

LOOPINDEX name

...where you choose the "name." For example,

LOOPINDEX CYCLE-COUNTER

Once you have defined a LOOPINDEX, you can specify a starting value, an ending
value, and an optional step (increment) for the counter. For example, to specify that the
counter is to go from 0 to 100 in steps of 2, you would type:

0 CYCLE-COUNTER START

100 CYCLE-COUNTER END
2 CYCLE-COUNTER STEP

You can specify these in any order. If you don't explicitly specify START, END, or
STEP, the default values will be used. The default for a new counter is to count from 0
to 1 with a step of 1. So, if you want to define a counter that goes from 0 to 200 with a
step of 1, all you have to change is the END value:

LOOPINDEX BLINK-COUNTER
200 BLINK-COUNTER END

If you use a negative STEP, the counter will count backwards. In this case the END value
must be less than the START value!

You can change the START, END, and STEP values at any time, even when the counter is

running.

1.7.2. Counting

The loopindex is incremented when you use the statement
name COUNT
For example,

CYCLE-COUNTER COUNT

COUNT will always return a truth value which indicates if the loopindex has passed its
limit. If it has not, COUNT will return false (zero). If it has, COUNT will return true
(nonzero), and it will also reset the loopindex value to the START value.

This truth value allows you to take some action when the limit is reached. This can be
used in an [F..THEN statement:

CYCLE-COUNTER COUNT IF GRNLED OFF THEN
It can also be used as an IsoMax condition:
CONDITION CYCLE-COUNTER COUNT CAUSES GRNLED OFF

In this latter example, the loopindex will be incremented every time this condition is
tested, but the CAUSES clause will be performed only when the loopindex reaches its
limit.

Note that the limit test depends on whether STEP is positive or negative. If positive, the
loopindex "passes" its limit when the count value + STEP value is greater than the END
value. If negative, the loopindex passes its limit when the count value + STEP value is
less than the END value.

In both cases, signed integer comparisons are used. Be careful that your loopindex limits
don't result in an infinite loop! If you specify an END value of HEX 7FFF, and a STEP
of 1, the loopindex will never exceed its limit, because in two's complement arithmetic,
adding 1 to 7FFF gives -8000 hex -- a negative number, which is clearly less than 7FFF.

Also, be careful that you always use or discard the truth value left by COUNT. If you just
want to increment the loopindex, without checking if it has passed its limit, you should
use the phrase

CYCLE-COUNTER COUNT DROP

1.7.3. Using the Loopindex Value

Sometimes you need to know the value of the index while it is counting. This can be
obtained with the statement

name VALUE
For example,
CYCLE-COUNTER VALUE

Sometimes you need to manually reset the count to its starting value, before it reaches the
end of count. The statement

name RESET

will reset the index to its START value. For example,
CYCLE-COUNTER RESET

Remember that you don't need to explicitly RESET the loopindex when it reaches the end
of count. This is done for you automatically. The loopindex "wraps around" to the
START value, when the END value is passed.

1.7.4. A "DO loop"Example

This illustrates how a loopindex can be used to replace a DO loop in a program. This
also illustrates the use of VALUE to get the current value of the loopindex.

LOOPINDEX BLINK-COUNTER

DECIMAL 20 BLINK-COUNTER END

2 BLINK-COUNTER STEP

: TEST BEGIN BLINK-COUNTER VALUE . BLINK-COUNTER COUNT UNTIL ;

If you now type TEST, you will see the even numbers from O (the default START value)
to 20 (the END value).'> This is useful to show how the loopindex behaves with negative
steps:

-2 BLINK-COUNTER STEP
40 BLINK-COUNTER START
BLINK-COUNTER RESET
TEST

This counts backwards by twos from 40 to 20. Note that, because we changed the
START value of BLINK-COUNTER, we had to manually RESET it. Otherwise TEST
would have started with the index value left by the previous TEST (zero), and it would
have immediately terminated the loop (because it's less than the END value of 20).

1.7.5. An IsoMax Example

This example shows how a loopindex can be used within an IsoMax state machine, and
also illustrates one technique to "slow down" the state transitions. Here we wish to blink
the green LED at a rate 1/100 of the normal state processing speed. (Recall that [soMax
normally operates at 100 Hz; if we were to blink the LED at this rate, it would not be
visible!)

LOOPINDEX CYCLE-COUNTER

DECIMAL 100 CYCLE-COUNTER END

1 CYCLE-COUNTER START

MACHINE SLOW_GRN

ON-MACHINE SLOW_ GRN

12 Forth programmers should note that the LOOPINDEX continues up to and including the END value,
whereas a comparable DO loop continues only up fo (but not including) its limit value.

APPEND-STATE SG_ON
APPEND-STATE SG_OFF

IN-STATE SG _ON

CONDITION CYCLE-COUNTER COUNT
CAUSES GRNLED OFF

THEN-STATE SG_OFF

TO-HAPPEN

IN-STATE SG_OFF

CONDITION CYCLE-COUNTER COUNT
CAUSES GRNLED ON

THEN-STATE SG_ON

TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_ GRN

Here the loopindex CYCLE-COUNTER counts from 1 to 100 in steps of 1. It counts in
either state, and only when the count reaches its limit do we change to the other state (and
change the LED). That is, the end-of-count CAUSES the LED action and the change of
state. Since the counter is automatically reset after the end-of-count, we don't need to
explicitly reset it in the IsoMax code.

1.7.6. Summary of Loopindex Operations

LOOPINDEX name

START
END
STEP

COUNT

RESET

VALUE

Defines a "loop index" variable with the given name. For example,
LOOPINDEX COUNTER1

These words set the start value, the end value, or the step value (increment) for the
given loop index. All of these expect an integer argument and the name of a
loopindex variable. Examples:

1 COUNTER1 START

100 COUNTER1 END

3 COUNTER1 STEP
These can be specified in any order. If any of them is not specified, the default
values will be used (START=0, END=1, STEP=1).

This causes the given loop index to increment by the STEP value, and returns a
true or false value: true (-1) if the end of count was reached, false (0) otherwise.
For example:

COUNTER1 COUNT
End of count is determined after the loop index is incremented, as follows: If
STEP is positive, "end of count" is when the index is greater than the END value.
If STEP is negative, "end of count" is when the index is less than the END value.
Signed integer comparisons are used. In either case, when the end of count is
reached, the loop index is reset to its START value.

This word manually resets the given loop index to its START value. Example:
COUNTER1 RESET

This returns the current index value (counter value) of the given loop index. It
will return a signed integer in the range -32768..+32767. For example:
COUNTER1 VALUEprints the loop index COUNTERI1

1.8. Random Number Generator
(IsoMax version 0.75 and greater)

IsoMax includes a pseudo-random number generator that can be used to produce integer
(single or double precision) and floating-point random numbers.

RAND returns a random single precision unsigned integer in the range 0 to 65535.
DRAND returns a random double precision unsigned integer in the range 0 to 2°>-1.
FRAND returns a random floating point value in the range 0.0 to 1.0.

seed is a double-precision integer variable (a 2VARIABRLE) which holds the

“seed” of the random number generator. If you initialize this to a known
value, you can generate a repeatable pseudo-random sequence. If you
wish to generate a different sequence each time you use the IsoPod, you
should initialize this to some random starting value.

Remember that this is a pseudo-random number generator. It has a reasonably long cycle
(2**) and is adequate for many applications (like rolling “electronic dice”). But for
“serious” statistical modeling or simulation, you should write a more sophisticated
random number generator.

When making “smaller” random numbers from RAND or DRAND, it is important to
remember that the most significant bits are the most random. In other words, you should
not mask off the high bits and use the low bits. Instead, you should use division to reduce
the random number to a smaller range. For example, to simulate one throw of a die:

DECI MAL
: RAND6 (-- n) RAND O 10922 UM MOD SWAP DROP ;
TOSS (-- n) BEGN RAND6 DUP 5 > WH LE DROP REPEAT ;

The random number (0 to 65535) is divided by 10922, using unsigned arithmetic, to
produce a value in the range 0 to 5. The probabilities of getting 0 to 5 will be equal.
Since there are six RAND values (65532-65535) which will produce a result of 6, TOSS is
programmed to reject those, and will throw the die again if they occur.

1.8.1. Implementation Details

The pseudo-random number generator uses a simple “linear congruential” algorithm, as
described by D. E. Knuth in The Art of Computer Programming. The recurrence relation
for this generator is

Xn+1 = (aX, + ¢) mod m

where a=1664525, c=1, and m=2? (the double-precision integer word size). These
coefficients meet Knuth’s theoretical requirements and have been found to produce well-
distributed random numbers. "

1.9. Autostarting an IsoMax Application

1.9.1. The Autostart Search

When the IsoPod is reset, it searches the Program Flash ROM for an autostart pattern.
This is a special pattern in memory which identifies an autostart routine. It consists of
the value $AS5A, followed by the address of the routine to be executed.

xx00: $AS5A
xx01: address of routine

It must reside on an address within Program ROM which is a multiple of $400, i.c.,
$0400, $0800, $0CO00, ... $7400, $7800, $7C00.

The search proceeds from $0400 to $7C00, and terminates when the first autostart pattern
is found. This routine is then executed. If the routine exits, the IsoMax interpreter will
then be started.

1.9.2. Writing an Application to be Autostarted

Any defined word can be installed as an autostart routine. For embedded applications,
this routine will probably be an endless loop that never returns.

Here's a simple routine that reads characters from terminal input, and outputs their hex
equivalent:

MATN HEX BEGIN KEY . AGAIN ; EEWORD

Note the use of EEWORD to put this routine into Flash ROM. An autostart routine must
reside in Flash ROM, because when the IsoPod is powered off, the contents of RAM will
be lost. If you install a routine in Program RAM as the autostart routine, the IsoPod will
crash when you power it on. (To recover from such a crash, see "Bypassing the
Autostart" below.)

Because this definition of MATN uses a BEGIN. . .AGAIN loop, it will run forever. You
can define this word from the keyboard and then type MAIN to try it out (but you'll have
to reset the IsoPod to get back to the command interpreter). This is how you would write
an application that is to run forever when the IsoPod is reset.

13 Per Knuth, these coefficients were proposed by Lavaux and Janssens for 32-bit machines, and the
corresponding generator measures well on the “spectral test” for random number distribution. See D. E.
Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms, Second Edition, Chapter
3, pp- 102-103 and 170-171.

You can also write an autostart routine that exits after performing some action. One
common example is a routine that starts some IsoMax state machines. For this
discussion, we'll use a version of MATN that returns when an escape character is input:

HEX
MAINZ2 HEX BEGIN KEY DUP . 1B = UNTIL ; EEWORD

In this example the loop will run continuously until the ESC character is received, then it
exits normally. If this is installed as the autostart routine, when it exits, the IsoPod will
proceed to start the [soMax command interpreter.

1.9.3. Installing an Autostart Application

One the autostart routine is written, it can be installed into Flash ROM with the command
address AUTOSTART routine-name

This will build the autostart pattern in ROM. The address is the location in Flash ROM
to use for the pattern, and must be a multiple of $400. Often the address $7CO00 is used.
This leaves the largest amount of Flash ROM for the application program, and leaves the
option of later programming a new autostart pattern at a lower address. (Remember, the
autostart search starts low and works up until the firs¢ pattern found, so an autostart at
$7800 will override an autostart at $7C00.) So, for example, you could use

HEX 7C00 AUTOSTART MAINZ2

to cause the word MAIN?2 to be autostarted. (Note the use of the word HEX to input a hex
number.)

Try this now, and then reset the IsoPod. You'll see that no "IsoMax" prompt is displayed.
If you start typing characters at the terminal, you'll see the hex equivalents displayed.
This will continue forever until you hit the ESC key, at which point the "IsoMax" prompt
is displayed and the IsoPod will accept commands.

Note: starting with IsoMax version 0.61, you do not need to provide an address
for AUTOSTART. It will always use a default address for the autostart pattern.
This example will still work, but you’ll find the value 7C00 left on the stack
because it wasn’t used.

1.9.4. Saving the RAM data for Autostart

Power the IsoPod off, and back on, and observe that the autostart routine still works.
Then press the ESC key to exit to the [soMax command interpreter. Now try typing
MAIN2. IsoMax doesn't recognize the word, even though you programmed it into Flash
ROM! If you type WORDS you won't see MAIN2 in the listing. Why?

The reason is that some information about the words you have defined is kept in RAM",

If you just reset the board from MaxTerm, the RAM contents will be preserved. But if
you power the board off and back on, the RAM contents will be lost, and IsoMax will
reset RAM to known defaults. If you type WORDS after a power cycle, all you will see
are the standard IsoMax words: all of your user-defined words are lost.

To prevent this from happening, you must save the RAM data to be restored on reset.
This is done with the word SAVE-RAM:

SAVE-RAM

This can be done either just before, or just after, you use AUTOSTART. SAVE-RAM
takes a "snapshot" of the RAM contents, and stores it in Data Flash ROM. Then, the next
time you power-cycle the board, those preserved contents will be reloaded into RAM.

This includes both the IsoMax system variables, and any variables or data structures you
have defined.

Note: a simple reset will not reload the RAM. When the IsoPod is reset, it first checks to
see if it has lost its RAM data. Only if the RAM has been corrupted -- as it is by a power
loss -- will the IsoPod attempt to load the SAVE-RAM snapshot. (And only if there is no
SAVE-RAM snapshot will it restore the factory defaults.) If you use MaxTerm to reset
the IsoPod, the RAM contents will be preserved.

1.9.5. Removing an Autostart Application
Don't try to reprogram MATIN?Z just yet. Even though the RAM has been reset to factory
defaults, MATN?2 is still programmed into Flash ROM, and IsoMax doesn't know about it.
In fact, if you try to redefine MAIN2 at this point, you might crash the IsoPod, as it

attempts to re-use Flash ROM which hasn't been erased. (To recover from this, see
"Bypassing the Autostart," below.)

To completely remove all traces of your previous work, use the word SCRUB:
SCRUB

This will erase all of your definitions from Program Flash ROM -- including any
AUTOSTART patterns which have been stored -- and will also erase any SAVE-RAM
snapshot from Data Flash ROM. Basically, the word SCRUB restores the IsoPod to its
factory-fresh state.

1.9.6. Bypassing the Autostart

What if your autostart routine locks up? If you can't get access to the IsoMax command
interpreter, how do you SCRUB the application and restore the IsoPod to usability?

" To be specific, what is lost is the LATEST pointer, which always points to the last-defined word in the
dictionary linked list. The power-up default for this is the last-defined word in the IsoMax kernel.

You can bypass the autostart search, and go directly to the IsoMax interpreter, by
jumpering together pins 2 and 4 on connector J3, and then resetting the [soPod. You can
do this with a common jumper block:

J31 5 [5]«—PIN2 (GND)
ok_PIN4(SCLK)

00

00

00

CPU

J21OO
(ON©)
OO0
OO0
OO0

IsoPod V1

J51 5 [55]«—PIN 2 (GND)
o KPIN 4 (SCLK)
00
00
(ONO)

CPU
¥4 o0
00
00
00
00

IsoPod V2

This connects the SCLK/PE4 pin to ground. When the IsoPod detects this condition on
reset, it does not perform the autostart search.

Note that this does not erase your autostart application or your SAVE-RAM snapshot from
Flash ROM. These are still available for your inspection". If you remove the jumper

' The IsoPod RAM will be reset to factory defaults instead of to the saved values, but you can still
examine the SAVE-RAM snapshot in Flash ROM.

block and reset the IsoPod, it will again try to run your autostart application. (This can be
a useful field diagnostic tool.)

To remove your application and start over, you'll need to use the SCRUB command. The
steps are as follows:

1. Connect a terminal (or MaxTerm) to the RS-232 port.
2. Jumper pins 2 and 4 on J3.

3. Reset the IsoPod. You will see the "[soMax" prompt.
4. Type the command SCRUB .

5. You can now remove the jumper from J3.

1.9.7. Summary
Use EEWORD to ensure that all of your application routines are in Flash ROM.

When your application is completely loaded, use SAVE-RAM to preserve your RAM data
in Flash ROM.

Use address AUTOSTART routine-name to install your routine for
autostarting. "address" must be a multiple of $0400 in empty Flash ROM; HEX 7C00 is
commonly used.

To clear your application and remove the autostart, use SCRUB. This restores the IsoPod
to its factory-new state.

If the autostart application locks up, jumper together pins 2 and 4 of J3, and reset the
IsoPod. This will give you access to the [IsoMax command interpreter.

1.10. SAVE-RAM

The IsoPod contains 4K words of nonvolatile “Flash” data storage. This can be used to
save system variables and your application variables so that they are automatically
initialized when the IsoPod is powered up. This is done with the word SAVE-RAM.

1.10.1. Data Memory Map

The internal RAM of the IsoPod is divided into three regions: kernel buffers, User
Variables, and application variables.

Data Flash ROM
1000
*typical addresses; may vary
depending on IsoMax version
available for
application
Data RAM
0000 1800
kernel
variables,
buffers,
stacks
1C00*
04B0O* 1CBO*
User Variables
0550%*
application .
variables and RAM image
data
structures
07FF 1FFF

Kernel buffers include the stacks, working “registers,” and other scratch data that are
used by the IsoMax interpreter. These are considered “volatile” and are always cleared
when the IsoPod is powered up. These are also private to IsoMax and not available to
you.

“User Variables” are IsoMax working variables which you may need to examine or
change. These include such values as the current number base (BASE), the current ROM

and RAM allocation pointers, and the Terminal Input Buffer. This region also includes
RAM for the IsoMax state machine and the predefined IsoPod I/O objects.

Application data is whatever variables, objects, and buffers you define in your application
program. This can extend up to the end of RAM (address O7FF hex in the IsoPod).

1.10.2. Saving the RAM image

The word SAVE-RAM copies the User Variables and application data to the end of Data
Flash ROM. All of internal RAM, starting at the first User Variable (currently C/L) and
continuing to the end of RAM, is copied to corresponding addresses in the Flash ROM.

Note that this will copy all VARTIABLESs and the RAM contents of all objects, but it will
not copy the stacks.

Normally you will use SAVE-RAM to take a “snapshot”of your RAM data when all your
variables are initialized and your application is ready to run.

1.10.2.1. Flash erasure

Because the SAVE-RAM uses Flash memory, it must erase the Flash ROM before it can
copy to it. This is automatically done by SAVE-RAM, and you need not perform any

explicit erase function. However, you should be aware that SAVE-RAM will erase more
Flash ROM than is needed for the RAM image.

Flash ROM is erased in “pages” of 256 words each. To ensure that all of the RAM image
is erased, SAVE-RAM must erase starting at the next lower page boundary. A page
boundary address is always of the form $XXO00 (the low eight bits are zero). So, in the
illustrated example, Flash ROM is erased starting at address $1C00.

If you use Data Flash ROM directly in your application, you can be sure that your data
will be safe if you restrict your usage to addresses $1000-$17FF. Some of the space
above $1800 is currently unused, but this is not guaranteed for future [soMax releases.

1.10.3. Restoring the RAM image

The IsoPod will automatically copy the saved RAM image from Flash ROM back to
RAM when it is first powered up. This will occur before your application program is
started. So, you can use SAVE-RAM to create an “initial RAM state” for your
application.

If the IsoPod is reset and the RAM contents appear to be valid, the saved RAM image
will not be used. This may happen if the IsoPod receives a hardware reset signal while
power is maintained. Usually this is the desired behavior.

1.10.3.1. Restoring the RAM image manually

You can force RAM to be copied from the saved image by using RESTORE-RAM. This
does exactly the reverse of SAVE-RAM: it copies the contents of Data Flash ROM to Data
RAM. The address range copied is the same as used by SAVE-RAM.

So, if your application needs RAM to be initialized on every hardware reset (and not just
on a power failure), you can put RESTORE-RAM at the beginning of your autostart
routine.

Note: do not use RESTORE-RAM if SAVE-RAM has not been performed. This will cause
invalid data to be written to the User Variables (and to your application variables as
well), which will almost certainly crash the IsoPod. For most applications it is sufficient,
and safer, to use the default RAM restore which is built into the IsoPod kernel.

1.11. IsoPod™ Reset Sequence

The IsoPod employs a flexible initialization that gives you many options for starting and
running application programs. Sophisticated applications can elect to run with or without
IsoMax, and with the default or custom processor initialization. This requires some
knowledge of the steps that the IsoPod takes upon a processor reset:

1. Perform basic CPU initialization. This includes the PLL clock generator and the
RS232 serial port.

2. Do the QUICK-START routine. If a QUICK-START vector is present in RAM,
execute the corresponding routine. QUICK-START is designed to be used before any
other startup code, normally just to provide some additional initialization. In particular,
this is performed before RAM is re-initialized. This gives you the opportunity to save
any RAM status, for example on the occurrence of a watchdog reset. Note that a power
failure which clears the RAM will also clear the QUICK-START vector.

3. Stop IsoMax. This is in case of a "software reset" that would otherwise leave the
timer running.

4. Check for "autostart bypass." Configure the SCLK/PE4 pin as an input with pullup
resistor. If the SCLK/PE4 pin then reads a continuous "0" (ground level) for 1
millisecond, skip the autostart sequence and "coldstart" the IsoPod. This will initialize
RAM to factory defaults and start the [soMax interpreter.

This is intended to recover from a situation where an autostart application locks up
the IsoPod. Simply jumper the SCLK/PE4 pin to ground, and reset the IsoPod. This
will reset the RAM and start the interpreter, but please note that it will not erase any
Flash ROM. Flash ROM can be erased with the SCRUB command from the IsoMax
interpreter.

This behavior should be kept in mind when designing hardware around the IsoPod. If
the IsoPod is installed as an SPI master, or if the SCLK/PE4 pin is used as a
programmed output, there will be no problem. If the IsoPod is installed as an SPI
slave, the presence of SPI clock pulses will not cause a coldstart, but a coldstart wil/
happen if SCLK is held low in the "idle" state and a CPU reset occurs. For this
reason, if the IsoPod is an SPI slave, we recommend configuring the SPI devices with
CPOL=1, so the "idle" state of SCLK is high. If the SCLK/PE4 pin is used as a
programmed input, avoid applications where this pin might be held low when a CPU
reset occurs.

If SCLK/PE4 is not grounded, proceed with the autostart sequence.

5. Check the contents of RAM and initialize as required.

a. If the RAM contents are valid'®, use them. This will normally be the case if the
CPU is reset with no power cycle, e.g., reset by MaxTerm, a watchdog, or an external
reset signal.

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash
ROM. Ifthis RAM image is valid, use it. This gives you a convenient method to
initialize your application RAM.

c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults.
Note that this will reset the dictionary pointer but will not erase any Flash ROM.

6. Look for a "boot first" routine. Search for an $A44A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "boot first" routine. IsoMax is
not running at this point.

a. If the "boot first" routine never exits, only it will be run.

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the
autostart sequence.

7. Start IsoMax with an "empty" list of state machines. After this, you can begin
INSTALLing state machines. Any state machines INSTALLed before this point will be
disabled.

8. Look for an "autostart" routine. Search for an $AS5A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "autostart" routine.

a. If the "autostart" routine never exits, only it will be run. (Of course, any IsoMax
state machines INSTALLed by this routine will also run.)

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax
interpreter.

1.11.1. In summary:

Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip
initialization which must occur immediately.

Use an $A44A "boot first" vector for initialization which must precede IsoMax
activation, but which needs initialized RAM.

Use an $AS55A "autostart" vector to install IsoMax state machines, and for your main
application program.

To bypass the autostart sequence, jumper SCLK/PE4 to ground.

'® RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234.

1.12. Object Oriented Extensions

These words provide a fast and compact object-oriented capability to MaxForth. It
defines Forth words as "methods" which are associated only with objects of a specific
class.

1.121. Action of an Object

An object is very much like a <BUILDS DOES> defined word. It has a user-defined data
structure which may involve both Program ROM and Data RAM. When it is executed, it
makes the address of that structure available (though not on the stack...more on this in a
moment).

What makes an object different is that there is a "hidden" list of Forth words which can
only be used by that object (and by other objects of the same class). These are the
"methods," and they are stored in a private wordlist. Nofe that this is not the same as a
Forth "vocabulary." Vocabularies are not used, and the programmer never has to worry
about word lists.

Each method will typically make several references to an object, and may call other
methods for that object. If the object's address were kept on the stack, this would place a
large burden of stack management on the programmer. To make object programming
simpler and faster, the address of the current object is stored in a variable, OBJREF. The
contents of this variable (the address of the current object) can always be obtained with
the word SELF.

When executed (interpreted), an object does the following:

1. Make the "hidden" word list of the object available for searching.

2. Store the object's address into OBJREF.

After this, the private methods of the object can be executed. (These will remain
available until an object of a different class is executed.)

When compiled, an object does the following:

1. Make the "hidden" word list of the object available for searching.

2. Compile code into the current definition which will store the object's address into
OBIJREF.

After this, the private methods of the object can be compiled. (These will remain

available until an object of a different class is compiled.) Note that both the object

address and the method are resolved at compile time. This is "early binding" and results

in code that is as fast as normal Forth code.

In either case, the syntax is identical:
object method

For example:
REDLED TOGGLE

1.12.2. Defining a new class
BEGIN-CLASS name

Words defined here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

PUBLIC

Words defined here will be visible at all times.
These will normally be the "objects" which are used in the main program.

END-CLASS name

1.12.3. Defining an object

OBJECT name This defines a Forth word "name" which will be an object of the
current class. The object will initially be "empty", that is, it will have no
ROM or RAM allocated to it. The programmer can add data structure to
the object using P, , PALLOT and ALLOT, in the same manner as for
<BUILDS DOES> words. Like <BUILDS DOES>, the action of an
object is to leave its Program memory address.

1.12.4. Referencing an object

SELF This will return the address of the object last executed. Note that this is an
address in Program memory. If the object will use Data RAM, it is the
responsibility of the programmer to store a pointer to that RAM space.

See the example below.

1.12.5. Object Structure

An object may have associated data in both Program and Data spaces. This allows ROM
parameters which specify the object (e.g., port numbers for an I/O object); and private
variables ("instance variables") which are associated with the object. By default, objects
return their Program (ROM) address. If there are RAM variables associated with the
object, a pointer to those variables must be included in the ROM data.

Object data structure

Program space Data space
Address of object — (optional) __| > RAM data
RAM pointer
ROM data RAM data
ROM data

Note that although OBJECT creates a pointer to Program space, it does not reserve any
Program or Data memory. That is the responsibility of the programmer. This is done in
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or
PALLOT to add cells to Program space and , or ALLOT to add cells to Data space. The
programmer can use OBJECT to build a custom defining word for each class. See the
example below.

1.12.6. Example using ROM and RAM

This is an example of an object which has both ROM data (a port address) and RAM data
(a timebase value).

BEGIN-CLASS TIMERS

: TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC

0D00 TIMER TAO

0D08 TIMER TAl
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT.
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that
RAM (HERE) into Program memory (P,). This builds the RAM pointer as shown above.
Finally, it stores the I/O port address "a" into the second cell of Program memory (the
second P,). Each object built with TTMER will have its own copy of this data structure.

After the object is executed, SELF will return the address of the Program data for that
object. Because we've stored a RAM pointer as the first Program cell, the phrase SELF
P@ will return the address of the RAM data for the object. It is not required that the first
Program cell be the RAM pointer, but this is strongly recommended as a programming
convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object
(since that was stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also
build them into other Forth words. All of this will normally go in the "private" class
dictionary:

BEGIN-CLASS TIMERS

: TIMER (a --—) OBJECT HERE 1 ALLOT P, P,
: TMR PERIOD (-- a) SELF PQ ; (RAM variable for this timer)
: BASEADDR (-—- a) SELF CELL+ PQ ; (I/0 addr for this timer)
: TMR SCR (-— a) BASEADDR 7 + ; (Control register)
: SET-PERIOD (n —--) TMR PERIOD [
: ACTIVE-HIGH (--) 0202 TMR SCR CLEAR-BITS ;
PUBLIC
0D0O0 TIMER TAO (Timer with I/O address 0D0O)
0D08 TIMER TAl (Timer with I/O address 0D0S8)

END-CLASS TIMERS

After this, the phrase 100 TAO SET-PERIOD will store the RAM variable for timer
object TAO,and 200 TA1l SET-PERIOD will store the RAM variable for timer object
TAl. TAO ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1
ACTIVE-HIGH will clear bits in timer A1 (at port address 0DOF).

In a WORDS listing, only TAO and TA1 will be visible. But after executing TAO or TA1,
all of the words in the TTMERS class will be found in a dictionary search.

Because the "methods" are stored in private word lists, you can re-use method names in
different classes. For example, it is possible to have an ON method for timers, a different
ON method for GPIO pins, a third ON method for PWM pins, and so on. When the object
is named, it will automatically select the correct set of methods to be used! Also, ifa
particular method has nof been defined for a given object, you will get an error message
if you attempt to use that method with that object. (One caution: if there is word in the
Forth dictionary with the same name, and there is no method of that name, the Forth word
will be found instead. An example of this is TOGGLE. If you have a TOGGLE method,
that will be compiled. But if you use an object that doesn't have a TOGGLE method,
Forth's TOGGLE will be compiled. For this reason, methods should not use the same
names as "ordinary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names.
For example, you can't have a Timer named A0 and a GPIO pin named A0. You must
give them unique names like TAO and PAO.

1.13. Machine Code Programming

IsoMax allows individual words to be written in machine code as well as “high-level”
language code. Such words are indistinguishable in function from high-level words, and
may be used freely in application programs and state machines.

1.13.1. Assembler Programming

The IsoPod uses the Motorola DSP56F805 microprocessor. The machine language of
this processor is described in Motorola's DSP56800 16-Bit Digital Signal Processor
Family Manual, available at

<http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf>.

IsoMax does not include a symbolic assembler for this processor. You must use an
external assembler to convert your program to the equivalent hexadecimal machine code,
and then insert these numeric opcodes and operands into your IsoMax source code.'” For
an example, let's use an assembler routine to stop Timer D2:

. Ti mer/ Count er

; Ti mer control register

X 000X XXXX XXXX XXXX = no count
andc #$1FFF, X: $0D76 ; TWMRD2_CTRL

; Timer status & control register

; Clear TCF flag, clear interrupt enable flag
bfclr #$8000, X: $0D77 ; TMRD2_SCR clear TCF
bfclr #$4000, X: $0D77 ; TMRD2_SCR clear TCFIE

Translated to machine code, this is:

80F4 andc #$1FFF, X: $0D76
0D76
EO0O0O
80F4 bfclr #$8000, X: $0D77
oDr7
8000
80F4 bfclr #$4000, X: $0D77
oDr7
4000

7 1f you wish to translate your programs manually to machine code, a summary chart of
DSP56800 instruction encoding is given at the end of this manual.

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

To compile this manually into an IsoMax word, you must append each hexadecimal value
to the dictionary with the P, operator. (The “P” refers to Program space, where all
machine code must reside.) You can put more than one value per line:

80F4 P, 0D76 P, EOOO P,
80F4 P, 0D77 P, 8000 P,
80F4 P, 0D77 P, 4000 P,

All that remains is to add this as a word to the IsoMax dictionary, and to return from the
assembler code to [soMax. There are three ways to do this: with CODE, CODE-SUB, and
CODE-INT.

1.13.2. CODE functions

The special word CODE defines a machine language word as follows:
CODE word-name

(machine language for your word)

(machine language for JMP NEXT)
END-CODE

Machine code words that are created with CODE must return to IsoMax by performing a
jump to the special address NEXT. In IsoMax versions 0.52 and higher, this is address
30080. Earlier versions of IsoMax do not support NEXT and you must use CODE-SUB,
described below, to write machine code words.

An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080,
and our example STOP-TIMERD2 word could be written as follows:

HEX
CODE STOP- TI MERD?2

80F4 P, 0D76 P, E000 P,

80F4 P, 0D77 P, 8000 P,

80F4 P, 0D77 P, 4000 P,

E984 P, 0080 P, (JMP NEXT)
END- CODE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

1.13.3. CODE-SUB functions

The special word CODE~-SUB is just like CODE, except that the machine code returns to
IsoMax with an ordinary RTS instruction. This can be useful if you need to write a
machine code routine that can be called both from IsoMax and from other machine code

routines. It's also useful if the NEXT address is not available (as in IsoMax versions prior
to 0.52). The syntax is similar to CODE:

CODE-SUB word-name
(machine language for your word)
(machine language for RTS)
END-CODE

An RTS instruction is SEDDS8, so STOP-TIMERD2 could be written with CODE-SUB as
follows:

HEX

CODE- SUB STOP- TI MERD2
80F4 P, 0D76 P, E000 P
80F4 P, 0D77 P, 8000 P
80F4 P, 0D77 P, 4000 P
EDD8 P, (RTS)

END- CODE

This example will work in all versions of IsoMax.

1.13.4. CODE-INT functions

CODE-INT is just like CODE-SUB, except that the machine code returns to IsoMax with
an RTT (Return from Interrupt) instruction, $EDD9. This is useful if you need to write a
machine code interrupt handler that can also be called directly from IsoMax. CODE-INT
is only available on IsoMax versions 0.52 and later.

HEX

CODE- | NT STOP- TI MERD2
80F4 P, 0D76 P, E000 P
80F4 P, 0D77 P, 8000 P
80F4 P, 0D77 P, 4000 P
EDD9 P, (RTI)

END- CODE

To obtain the address of the machine code after it is compiled, use the phrase
' word-name CFA 2+

Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD
before trying to obtain the address of the machine code. EEWORD will change this
address.

1.13.5. Register Usage

In the current version of IsoMax software, all DSP56800 address and data registers may
be used in your CODE and CODE-SUB words. You need not preserve R0-R3, X0, YO,
Y1, A, B, or N. Do not change the “mode” registers MO1 or OMR, and do not change the
stack pointer SP.

Future versions of IsoMax may add more restrictions on register use. If you are
concerned about compatibility with future kernels, you should save and restore all
registers that your machine code will use.

CODE-INT words are expected to be called from interrupts, and so they should save any
registers that they use.

1.13.6. Calling High-Level Words from Machine Code

You can call a high-level IsoMax word from within a machine-code subroutine. This is
done by calling the special subroutine ATO4 with the address of the word you want to
execute.'® This address must be a Code Field Address (CFA) and is obtained with the
phrase

' word—-name CFA

This address must be passed in register RO. You can load a value into RO with the
machine instruction $87D0, $xxxx (where xxxx is the value to be loaded).

The address of the ATO4 routine can be obtained from a constant named ATO4. You can
use this constant directly when building machine code. The opcode for a JSR instruction
is SE9CS8, $aaaa where aaaa is an absolute address. So, to write a CODE-SUB routine
that calls the IsoMax word DUP, you could write:

HEX
CODE- SUB NEWDUP
8700 P, ' DUP CFA P, (nove DUP CFA to RO)
E9C8 P, ATO4 P, (JSR ATO4)
EDDS P, (RTS)
END- CODE

Observe that the phrases ' DUP CFA and ATO4 are used within the CODE-SUB to
generate the proper addresses where required.

"®The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

1.14. Using CPU Interrupts in the IsoPod
This applies to IsoPod kernel v0.38 and later.

1.141. Interrupt Vectors in Flash ROM

The DSP56F805 processor used in the IsoPod supports 64 interrupt vectors, in the first
128 locations of Flash ROM. Each vector is a two-word machine instruction, normally a
JMP instruction to the corresponding interrupt routine. When an interrupt occurs, the
CPU jumps directly to the appropriate address ($00-$7E) in the vector table.

Since this vector table is part of the IsoPod kernel, it cannot be altered by the user. Also,
some interrupts are required for the proper functioning of the IsoPod, and these vectors
must never be changed. So the IsoPod includes a “user” vector table at the high end of
Flash ROM (addresses $7D80-7DFE). This is exactly the same as the “kernel” vector
table, except that certain “reserved for IsoPod” interrupts have been excluded. The user
vector table can be programmed, erased, and reprogrammed freely by the user, as long as
suitable precautions are taken.

1.14.2. Writing Interrupt Service Routines

Interrupt service routines must be written in DSP56F805 machine language, and must
end with an RTI (Return from Interrupt) instruction. Some peripherals will have
additional requirements; for example, many interrupt sources need to be explicitly cleared
by the interrupt service routine. For more information about interrupt service routines,
refer to the Motorola DSP56800 16-Bit Digital Signal Processor Family Manual (Chapter
7), and the Motorola DSP56F801/803/805/807 16-Bit Digital Signal Processor User’s
Manual.

You should be aware that the IsoPod uses certain channels in the Interrupt Priority
controller:

The IsoMax Timer (Timer C3") is assigned to Interrupt Priority Channel 3.
SCI (RS-232) and SPI serial I/O is assigned to Interrupt Priority Channel 4.
The I/O Scheduling Timer® is assigned to Interrupt Priority Channel 5.

These channels may be shared by other peripherals. However, it is important to
remember that these channels are enabled by the IsoMax kernel after a reset, and must
never be disabled. You should not use the corresponding bits in the Interrupt Priority
Register as interrupt enable/disable bits.

1 Timer D3 on IsoPods before version 0.65.
2 Version 0.69 and later.

Interrupt channels 0, 1, 2, and 6 are reserved for your use. The IsoMax kernel does not
use them, and you may assign, enable, or disable them freely. Channel 0 has the lowest
priority, and 6 the highest.”!

1.14.3. The User Interrupt Vector Table

The user vector table is identical to the kernel (CPU) vector table, except that it starts at
address $7D80 instead of address $0. Each interrupt vector is two words in this table,
sufficient for a machine language jump instruction. For all interrupts which are not
reserved by IsoMax, the kernel vector table simply jumps to the corresponding location in
the user vector table. (Remember that this adds the overhead of one absolute jump
instruction -- 6 machine clock cycles -- to the interrupt service.)

Note: IsoPod kernels version 0.37 and earlier do not support a user vector table.

Note: This table is subject to change. Future versions of the IsoPod software may
reserve more of these interrupts for internal use, as more 1I/O functions are added to
the IsoPod kernel.

Interrupt User Kernel | Description
Number | Vector Vector
Address | Address
$00 reset - reserved for IsoPod

$7D82 $02 COP Watchdog reset

$7D84 $04 reserved by Motorola

$06 illegal instruction - reserved for IsoPod
$7D88 $08 Software interrupt

$7DSA $0A hardware stack overflow

$7D8C $0C OnCE Trap

$7DSE $OE reserved by Motorola

$7D90 $10 external interrupt A

$7D92 $12 external interrupt B

$7D94 $14 reserved by Motorola

$7D96 $16 boot flash interface

$7D98 $18 program flash interface

$7D9A $1A data flash interface

$7D9C $1C MSCAN transmitter ready

$7D9E $1E MSCAN receiver full

$7DA0 $20 MSCAN error

$7DA2 $22 MSCAN wakeup

$7DA4 $24 reserved by Motorola

$26 GPIO E - reserved for IsoPod

$7DAS $28 GPIO D

$7DAA $2A reserved by Motorola

it 14 TS ol] =l el e e ol D= V=1 E=SY BN Fo I VY Y EOFY FCY P P

22 $2C GPIO B - reserved for IsoPod
23 $2E GPIO A - reserved for IsoPod
24 $30 SPI transmitter empty - reserved for IsoPod

2! Use channel 6 only for critically-urgent interrupts, since it will take priority over channels 4 and 5, both
of which require prompt service.

Interrupt User Kernel | Description
Number Vector Vector
Address | Address

25 $32 SPI receiver full/error - reserved for IsoPod
26 $7DB4 $34 Quad decoder #1 home

27 $7DB6 $36 Quad decoder #1 index pulse

28 $7DB8 $38 Quad decoder #0 home

29 $7DBA $3A Quad decoder #0 index pulse

30 $7DBC $3C Timer D Channel 0

31 $7DBE $3E Timer D Channel 1
32 $7DCO $40 Timer D Channel 2
33 $7DC2 $42 Timer D Channel 3
34 $7DC4 $44 Timer C Channel 0
35 $7DC6 $46 Timer C Channel 1
36 $48 Timer C Channel 2 - reserved for IsoPod
37 $4A Timer C Channel 3 - reserved for IsoPod
38 $7DCC $4C Timer B Channel 0
39 $7DCE $4E Timer B Channel 1
40 $7DD0 $50 Timer B Channel 2
41 $7DD2 $52 Timer B Channel 3
42 $7DD4 $54 Timer A Channel 0
43 $7DD6 $56 Timer A Channel 1
44 $7DD8 $58 Timer A Channel 2

45 $7DDA $5A Timer A Channel 3

46 $7DDC $5C SCI #1 Transmit complete

47 $5E SCI #1 transmitter ready - reserved for IsoPod
48 $7DEO $60 SCI #1 receiver error

49 $62 SCI #1 receiver full - reserved for IsoPod

50 $7DE4 $64 SCI #0 Transmit complete

51 $66 SCI #0 transmitter ready - reserved for IsoPod
52 $7DES $68 SCI #0 receiver error

53 $6A SCI #0 receiver full - reserved for IsoPod

54 $7DEC $6C reserved by Motorola

55 $7DEE $6E ADC A Conversion complete

56 $7DF0 $70 reserved by Motorola

57 $7DF2 $72 ADC A zero crossing/error

58 $7DF4 $74 Reload PWM B

59 $7DF6 $76 Reload PWM A

60 $7DF8 $78 PWM B Fault

61 $7DFA $7A PWM A Fault

62 $7DFC $7C PLL loss of lock

63 $7DFE $7E low voltage detector

1.14.4. Clearing the User Vector Table

Since the user vector table is at the high end of Flash ROM, it will be erased by the
SCRUB command (which erases all of the user-programmable Flash ROM).

If you wish to erase only the user vector table, you should use the command

HEX 7D00 PFERASE

This will erase 256 words of Program Flash ROM, starting at address 7D00. In other
words, this will erase locations 7D00-7DFF, which includes the user vector table.
Because of the limitations of Flash ROM, you cannot erase a smaller segment -- you must
erase 256 words. However, this is at the high end of Flash ROM and is unlikely to affect
your application program, which is built upward from low memory.

When Flash ROM is erased, all locations read as SFFFF. This is an illegal CPU
instruction. So it is very important that you install an interrupt vector before you enable
the corresponding interrupt! If you enable a peripheral interrupt when no vector has
installed, you will cause an Illegal Instruction trap and the IsoPod will reset.””

1.14.5. Installing an Interrupt Vector

Once the Flash ROM has been erased, you can write data to it with the PF'! operator.
Each location can be written only once, and must be erased before being written with a
different value.”

For example, this will program the low-voltage-detect interrupt to jump to address zero.
(This will restart the IsoPod, since address zero is the reset address.)

HEX E984 7DFE PF! 0 7DFF PF!

E984 is the machine language opcode for an absolute jump; this is written into the first
word of the vector. The destination address, 0, is written into the second word. Because
these addresses are in Flash ROM, you must use the PF'! operator. An ordinary !
operator will not work.

1.14.6. Precautions when using Interrupts
1. An unprogrammed interrupt vector will contain an FFFF instruction, which is an

illegal instruction on the DSP56F805. Don’t enable an interrupt until affer you have
installed its interrupt vector.

2. Remember that most interrupts must be cleared at the source before your service
routine Returns from Interrupt (with an RTT instruction). If you forget to clear the
interrupt, you may end in an infinite loop.

3. Remember that SCRUB will erase all vectors in the user table. Be sure to disable all of
the interrupts that you have enabled, before you use SCRUB.

*2 This is why the “illegal instruction” interrupt is reserved for IsoMax. If it were vectored to the user table,
and you did not install a vector for it, the attempt to service an illegal instruction would cause yet another
illegal instruction, and the CPU would lock up.

3 Strictly speaking, you can write a Flash ROM location more than once, but you can only change “1” bits
to “0.” Once a bit has been written as “0”, you need to erase the ROM page to return it to a “1” state.

4. You cannot erase a single vector in the user table. You must use HEX 7D00
PFERASE to erase the entire table. As with SCRUB, be sure to disable all of your
interrupt sources first.

5. Do not use the global interrupt enable (bits I1 and 10 in the Status Register) to disable
your peripheral interrupts. This will also shut off the interrupts that are used by IsoMax,
and the IsoPod will likely halt.

6. It is permissible to disable interrupts globally for extremely brief periods -- on the
order of a few machine instructions -- in order to perform operations that mustn’t be
interrupted. But this may affect critical timing within IsoMax, and is generally
discouraged.

7. You can perform the action of an IsoPod reset by jumping to absolute address zero.
But note that, unlike a true hardware reset, this will not disable any interrupt sources that
you may have enabled.

1.15. Interrupt Handlers in High-Level Code

Interrupt handlers must be written in machine code. However, you can write a machine
code “wrapper” that will call a high-level [soMax word to service an interrupt. This
application note describes how. You may find it useful to refer to the previous sections
Machine Code Programming and Using CPU Interrupts in the IsoPod.

1.15.1. How it Works

The machine code routine below works by saving all the registers used by IsoMax, and
then calling the ATO4 routine to run a high-level IsoMax word. The high-level word
returns to the machine code, which restores registers and returns from the interrupt.

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE

DEOB P, \ LEA (SP) +

DOOB P, \ MOVE X0,X: (SP)+

D10B P, \ MOVE YO0,X: (SP)+

D30B P, \ MOVE Y1,X: (SP)+

DO8B P, \ MOVE A0, X: (SP)+

D60B P, \ MOVE Al,X: (SP)+

D28B P, \ MOVE A2,X: (SP)+

D18B P, \ MOVE BO,X: (SP)+

D70B P, \ MOVE B1,X: (SP)+

D38B P, \ MOVE B2,X: (SP)+

D8OB P, \ MOVE RO, X: (SP)+

DS0B P, \ MOVE R1,X: (SP)+

DAOB P, \ MOVE R2,X: (SP)+

DBOB P, \ MOVE R3,X: (SP)+

DDOB P, \ MOVE N,X: (SP)+

DESB P, \ MOVE LC,X: (SP)+

DF8B P, \ MOVE LA,X: (SP)+

F854 P, OBJREF P, \ MOVE X:0BJREF,RO

FA54 P, WP P, \ MOVE X:WP,R2

D8OB P, \ MOVE RO, X: (SP)+

DALF P, \ MOVE R2,X: (SP) ; Note no increment on last push!
87D0 P, xxxx P, \ MOVE #$XXXX, R0 ; This is the CFA of the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X: (SP)-,R2 ;restore the saved wp
F81B P, \ MOVE X: (SP)-,R0O ;restore the saved objref
FFO9B P, \ MOVE X: (SP)-,LA

DA54 P, WP P, \ MOVE R2,X:FWP

D854 P, OBJREF P, \ MOVE RO, X:0BJREF

FEOB P, \ MOVE X: (SP)-,LC

FD1B P, \ MOVE X: (SP)-,N

FB1B P, \ MOVE X: (SP)-,R3

FA1B P, \ MOVE X: (SP)-,R2

F91B P, \ MOVE X: (SP)-,R1

F81B P, \ MOVE X: (SP)-,R0

F39B P, \ MOVE X: (SP)-,B2

F71B P, \ MOVE X: (SP)-,Bl

F19B P, \ MOVE X: (SP)-,B0
F29B P, \ MOVE X: (SP)-,A2
F61B P, \ MOVE X: (SP)-,Al
FO9B P, \ MOVE X: (SP)-,A0
F31B P, \ MOVE X: (SP)-,Y1l
F11B P, \ MOVE X: (SP)-,Y0
FO1B P, \ MOVE X: (SP)-,X0
EDD9 P, \ RTI

END-CODE

The only registers that are saved automatically by the processor are PC and SR. A// other
registers that will be used must be saved manually. To allow a high-level routine to
execute, we must save R0-R3, X0, YO, Y1, A, B, N, LC, and LA. Two registers that
need not be saved are MO1 and OMR, because these registers are never used or changed
by IsoMax. We must also save the two variables WP and OBJREF, which are used by the
IsoMax interpreter and object processor.

Since the DSP56F805 processor does not have a “pre-increment” address mode, the first
push must be preceded by a stack pointer increment, LEA (SP)+, and the last push must
not increment SP.

The instruction ordering may seem peculiar; this is because a MOVE to an address
reigster (Rn) has a one-instruction delay. So we always interleave another unrelated
instruction after a MOVE x, Rn. Note also the use of the symbols ATO4 and OBJREF to
obtain addresses. The variable WP is located at hex address 0041 in current [soMax
kernels, and this is defined as a constant for readability.

The value shown as “xxxx” in the listing above is where you must put the Code Field
Address (CFA) of the desired high-level word. You can obtain this address with the
phrase

' word-name CFA

1.15.2. Use of Stacks

The interrupt routine will use the same Data and Return stacks as the [soMax command
interpreter, that is, the “main” program.”* Normally this is not a problem, because
pushing new data onto a stack does not affect the data which is already there. However,
you must take care that your interrupt handler leaves the stacks as it found them — that is,
does not leave any extra items on the stack, or consume any items that were already there.
A stack imbalance in an interrupt handler is a very quick way to crash the IsoPod.

1.15.3. Use of Variables

Some high-level words use temporary variables and buffers which are not saved when an
interrupt occus. One example is the numeric output functions (. D. F. and the like).

*The IsoMax state machine uses an independent set of stacks.

You should not use these words within your interrupt routine, since this will corrupt the
variables that might be used by the main program.

1.15.4. Re-Entrancy

To avoid re-entrancy problems, it is best to nof re-enable interrupts within your high-level
interrupt routine. Interrupts will be re-enabled automatically by the RT I instruction,
when your routine has finished its processing.

You must of course be sure to clear the interrupt source in your high-level service
routine. If you fail to do so, when the RT T instruction is executed, a new interrupt will
instantly occur, and your program will be stuck in an infinite loop of interrupts.

1.15.5. Example: Millisecond Timer

This example uses Timer D2 to increment a variable at a rate of once per millisecond.
After loading the entire example, you can use START-TMRD?2 to initialize the timer, set
up the interrupt controller for that timer, and enable the interrupt. From that point on, the
variable TICKS will be incremented on every interrupt. You can fetch the TICKS
variable in your main program (or from the command interpreter).

The high-level interrupt service routine is INT-SERVICE. It does only two things. First
it clears the interrupt source, by clearing the TCF bit in the Timer D2 Status and Control
Register. Then it increments the variable TICKS. As a rule, interrupt service routines
should be as short and simple as possible. Remember, no other processing takes place
while the interrupt is being serviced.

You can stop the timer interrupt with STOP-TMRD2.

\ Count for 1 msec at 5 MHz timer clock
DECIMAL 5000 CONSTANT TMRD2_COUNT EEWORD
HEX

0COO0 CONSTANT IOBASE EEWORD \ use 1000 for ServoPod

\ Timer D2 registers

IOBASE 0170 + CONSTANT TMRD2 CMP1l EEWORD
IOBASE 0173 + CONSTANT TMRD2 LOAD EEWORD
IOBASE 0176 + CONSTANT TMRD2 CTRL EEWORD
IOBASE 0177 + CONSTANT TMRD2 SCR EEWORD

\ GPIO interrupt control register
FFFB CONSTANT GPIO IPR EEWORD
2000 CONSTANT GPIO IPL 2 EEWORD \ bit which enables Channel 2 IPL

\ Interrupt vector & control.
\ Timer D channel 2 is vector 36, IRQ table address $48
0040 7D80 + CONSTANT TMRD27VECTOR EEWORD

\ Timer D channel 2 is controlled by Group Priority Register GPR8, bits
2:0

\ Timer will use interrupt priority channel 2

IOBASE 0268 + CONSTANT TMRD2 GPR EEWORD

0007 CONSTANT TMRDZ PLR MASK EEWORD

0003 CONSTANT TMRDZ PLR PRIORITY EEWORD \ pri’ty channel 2 in bits 2:0

\ Initialize Timer D2
START-TMRD2

\ Set compare 1 register to desired # of cycles
TMRDZ_COUNT TMRDZ_CMPl !

\ Set reload register to zero
0 TMRD2 LOAD !

\ Timer control register

\ 001 = normal count mode

\ 1 011 = IPbus clock / 8 = 5 MHz timer clock

\ 0 0 = secondary count source n/a

\ 0 = count repeatedly

\ 1 = count until compare, then reinit
\ 0 = count up

\ 0 = no co-channel init

\ 000 = OFLAG n/a

\ 0011 0110 0010 0000
3620 TMRDZ_CTRL !

$3620

\ Timer status & control register

\ Clear TCF flag, set interrupt enable flag
8000 TMRDZ_SCR CLEAR-BITS

4000 TMRD2 SCR SET-BITS

\ Interrupt Controller

\ set the interrupt channel = 3 for Timer D3
TMRDZ_PLR_MASK TMRDZ_GPR CLEAR-BITS
TMRDZ_PLR_PRIORITY TMRDZ_GPR SET-BITS

\ enable that interrupt channel in processor status register
GPIO IPL 2 GPIO IPR SET-BITS
; EEWORD

\ Stop Timer D2
STOP-TMRD2
\ Timer control register

\

000x XXXX XXXX XXXX

= no count

E000 TMRDZ CTRL CLEAR-BITS

\ Timer status & control register
clear interrupt enable flag

C000 TMRDZ SCR CLEAR-BITS
; EEWORD

\ Clear TCF flag,

VARIABLE TICKS

EEWORD

\ High level word to handle the timer D2 interrupt

TMRD2 -

IRPT

\ clear the TCF flag to clear the interrupt
8000 TMRD2 SCR CLEAR-BITS
\ increment the ticks counter
1 TICKS +!
; EEWORD

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE

DEOB
DOOB
D10B
D30B
D08B
D60B
D28B
D18B
D70B
D38B
D80OB
D90B
DAOB
DBOB
DDOB
DE8B
DF8B
F854
FA54
D80B
DA1F
87D0 P,
execute
E9C8 P,
FA1B P,
F81B P,

N N SN N N SN SN N O~

~

N N N N SN SN N N~ O~

L= avARL v B v IR vl v B v IRt v Ly w s v Ly v B o B v L s w B v B v B o B v IR v

~

\

OBJREF P,

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
WP P, \
\
\
p

' TMRD2-IR

ATO4 P,

~ - -

T

EEWORD

LEA

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

(SP) +
X0,X:
Y0, X:
Y1l,X:
AQ,X:
Al,X:
A2,X:
BO, X:
B1l,X:
B2,X:
RO, X:
R1,X:
R2,X:
R3,X:
N, X:
LC,X:
LA, X: (SP) +
X:0BJREF, RO

X:WP,R2

RO, X: (SP) +

R2,X: (SP) ; Note no

T U UUYYYTTUT
+ 4+ +

+

M N N NN N n nn N n n N

A
~ N~~~ N~~~ ~ ~ ~ o~~~ —~

CFA P, \ MOVE #$XXXX, RO

JSR
MOVE
MOVE

ATO4 ; do that
X:(SP)-,R2 ; restore
X:(SP)-,R0 ; restore

increment on last push!
; CFA of the word to

Forth word
the saved wp
the saved objref

FFO9B P, \ MOVE X: (SP)-,LA
DA54 P, WP P, \ MOVE R2,X:WP
D854 P, OBJREF P, \ MOVE RO,X:0BJREF
FEO9B P, \ MOVE X: (SP)-,LC
FD1B P, \ MOVE X: (SP)-,N
FB1B P, \ MOVE X: (SP)-,R3
FALB P, \ MOVE X: (SP)-,R2
F91B P, \ MOVE X: (SP)-,R1
F81B P, \ MOVE X: (SP)-,RO
F39B P, \ MOVE X: (SP)-,B2
F71B P, \ MOVE X: (SP)-,Bl
F19B P, \ MOVE X: (SP)-,BO0
F29B P, \ MOVE X: (SP)-,A2
F61B P, \ MOVE X: (SP)-,Al
FO9B P, \ MOVE X: (SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1l
F11B P, \ MOVE X: (SP)-,YO0
FO1B P, \ MOVE X: (SP)-,XO0
EDD9 P, \ RTI

END-CODE EEWORD

\ Install the interrupt vector in Program Flash ROM
E984 TMRDZ2 VECTOR PF'! \ JMP instruction
' INT-SERVICE CFA 2+ TMRDZ2 VECTOR 1+ PF'! \ target address

To install this interrupt you must have an IsoMax kernel version 0.5 or greater. This has
a table of two-cell interrupt vectors starting at $7D80. The first cell (at $7D80+$40 for
Timer D2) must be a machine-code jump instruction, $E984; the second cell is the
address of the interrupt service routine. This address is obtained with the phrase '
INT-SERVICE CFA 2+ because the first two locations of a CODE-SUB or CODE-
INT are “overhead.” The interrupt vector is not installed with EEWORD; instead, it is
programmed directly into Program Flash ROM with the PF'! operator.

Observe also the use of ' TMRD2-IRPT CFA to obtain the address “xxxx” of the high-
level interrupt service routine.

This example is shown running out of Program ROM; that is, the words have been
committed to Flash ROM with EEWORD. In an application you want your interrupt
handler to reside in ROM so that it survives a reset or a memory crash. (Leaving an
interrupt vector pointing to RAM, and then power-cycling the board, can cause the board
to lock up.)

1.16. Harvard Memory Model

The IsoPod Processor uses a "Harvard" memory model, which means that it has separate
memories for Program and Data storage. Each of these memory spaces uses a 16-bit
address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-bit
words of Data ("X") memory.

1.16.1. MEMORY OPERATORS

Most applications need to manipulate data, so the memory operators use Data space.
These include

@ ! ca c! +! HERE ALLOT p cC,

Occasionally you will need to manipulate Program memory. This is accomplished
through a separate set of memory operators having a "P" prefix:

p@ P! PCa@ PC! PHERE PALLOT P, PC,

Note that on the IsoPod™, the smallest addressable unit of memory is one 16-bit word.
This is the unpacked character size. This is also the "cell" size used for arithmetic and
addressing. Therefore, @ and C@ are equivalent, and ! and C! are equivalent.

1.16.2. WORD STRUCTURE

The executable "body" of a IsoMax™ word is kept in Program space. This includes the
Code Field of the word, and the threaded definition of high-level words or the machine
code definition of CODE words.

The "header" of a IsoMax™ word is also kept in Program space. This includes the Name
Field, the Link Field, and the PFA Pointer. However, this may be stored separately from
the executable “body.” This is to allow the headers, which aren’t used for an embedded
application, to be easily stripped.

Program Space Program Space

CFA=> Code Field NFA=> Name Length

PFA=> Threaded code
(high level words) Name
or Link to previous Name]
PFA Pointer

Machine code
(CODE words)

If you have not enabled separated heads, the words you add to the dictionary will have
the header immedately before the executable body.

1.16.3. VARIABLES

Since the Program space is normally ROM, and variables must reside in RAM and in
Data space, the "body" of a VARIABLE definition does not contain the data. Instead, it
holds a pointer to a RAM location where the data is stored.

Program Space Data Space
CFA Code Field > data
PFA=> RAM Pointer —| .

1.16.4. <BUILDS DOES>

"Defining words" created with <BUILDS and DOES> may have a variety of purposes.
Sometimes they are used to build Data objects in RAM, and sometimes they are used to
build objects in ROM (i.e., in Program space). In the <BUILDS code you can allocate
either space by using the appropriate memory operators.

Program Space Data Space

CFA> Code Field

PFA=> | DOES> Action Pointer .
Allocate with Allocate with
PHERE PALLOT HERE ALLOT

P, PC, G,

For maximum flexibility, DOES> will leave on the stack the address in Program
space of the user-allocated data. If you need to allocate data in Data space, you must
also store (in Program space) a pointer to that data. For example, here is how you might
define VARIABLE using <BUILDS and DOES>.

: VARIABLE
<BUILDS Defines a new Forth word, header and empty body;
HERE gets the address in Data space (HERE) and appends that to Program space;
o , appends a zero cell to Data space.
DOES> The "run-time" action will start with the Program address on the stack;
P@ fetch the cell stored at that address (a pointer to Data) and return that.

This constructs the following:

Program Space Data Space
CFA=> Code Field .
PFA=> | DOES> Action Pointer > 0 (data)

RAM pointer

Words with constant data, on the other hand, can be allocated entirely in Program space.
Here's how you might define CONSTANT:

: CONSTANT
<BUILDS
P,
DOES>
p@

(n--1)

Defines a new Forth word, header and empty body;

appends the constant value (n) to Program space.

The "run-time" action will start with the Program address on the stack;
fetch the cell stored at that address (the constant) and return that.

This constructs the following:

Program Space Data Space
CFA=> Code Field
PFA=>» | DOES> Action Pointer

N (constant value)

1.17. Object Oriented Internals

For this illustration we will use the BYTEIO
class from the file Gpioobj.4th (appended below).

1.17.1. Dictionary Hiding

BEGIN-CLASS marks the start of definitions
that will be "hidden." Once they are hidden, they
will only be visible to members of this class.
BEGIN-CLASS just marks a dictionary position;
it doesn't compile anything.

PUBLIC marks the end of the hidden definitions.
It does two things. First, it puts a pointer to the
last-defined word (i.e., the last hidden word) in
the context-last variable. This means these words
will still be found when the CONTEXT list is
searched. Second, it relinks the main dictionary
list around the hidden words, by resetting the last
variable.

At this point, the hidden words are still
searchable, and can still be used to write Forth
definitions. New definitions will be "public" and
will be part of the main dictionary list, not the
hidden list.

END-CLASS hides the private definitions, by
clearing CONTEXT. It also creates a class-name
word (in this example, BYTEIO) which will
make the private word list visible again, by
putting its dictionary link back into the context-
last variable.

1.17.2. Object Action

A word created with OBJECT has both a
compile-time action and a run-time action. At
compile-time (or when interpreted), it makes its
hidden word list visible, by putting the dictionary
link into the context-last variable. Thus, after an
object is named, its private "methods" can be
compiled or interpreted.

T

| previous word

| previous word

BEGIN-CLASS

| BASEADDR
[IS-INPUT
| IS-OUTPUT |
| PUTBYTE |
| GETBYTE |
\ I/0 \
_________ Yo _______PUBLIC
" dontext-last
A
| PO?TA | CONTEXT
\ PORTB \
\ BYTEIO \
TENDCLASS
| laterword |
| laterword |
Y.
st
A
CURRENT

Header

‘ length ‘ name ‘ link ‘ pfaptr ‘

Body /
Code [DOES>|hidden| Parameters
Field | code | words | (supplied by

(DIl) |pointer|pointer| programmer)
CFA PFA PFA+1 PFA+2

At run-time, an object puts the address of its parameters (PFA+2) into the OBJREF
variable. This is essentially the same as DOES>, except that the address is stored into a
variable instead of being left on the stack. The "methods" which follow the object all
expect to find this address in OBJREF. (The word SELF returns this address.)

Note: when an object is used in a Forth definition, what actually gets compiled is a literal
(in-line constant) with the address PFA+2. Thus the phrase PORTA GETBYTE is
compiled as

PORTA definition | ¢°de | DOES>| NFA of
in Program space Field cc_)de I_/O OxFBO
(DI pointer | (link)

PFA+2 CFA of GETBYTE
CFA of OBJLIT of PORTA definition from
object PORTA's class

The special word OBJLIT takes the in-line value which follows, and stores it in the
OBJREF variable. This is exactly the same as the Forth primitive LIT, except that the
value is stored in a variable instead of being left on the stack.

In this example, the PORTA definition has one user-supplied parameter: the value
0xFBO0, which is the I/O address of the desired port. The object is created, and this extra
parameter is appended, by the word I/O (see below).

BEGIN-CLASS BYTEIO

\ BYTEIO methods expect SELF to point to: baseaddr in ROM
: BASEADDR (-- a) SELF P@ ;

: IS-INPUT (makes pin an input
OFF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO
OFF BASEADDR 2+ CLEAR-BITS (data dir=in

IS-OUTPUT (makes pin an output

OFF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO

OFF BASEADDR 2+ SET-BITS (data dir=out
PUTBYTE (c —--) IS-OUTPUT BASEADDR 1+ C! ;
GETBYTE (-- c) IS-INPUT BASEADDR 1+ C@ ;

\ define an I/O port
: I/0 (baseaddr --) OBJECT P, ;

PUBLIC

FBO I/0 PORTA
FCO I/0 PORTB

END-CLASS BYTEIO

1.18. CPU Registers

Under construction...

(BASE REGISTERS)
0C00 SIM
0C40 PFIU2
0D00 TMRA
0D20 TMRB
0D40 TMRC
0D60 TMRD
0D80 CAN
0E00 PWMA
0E20 PWMB
0E40 DECO
0E50 DEC]1
0E60 ITCN
0E80 ADCA
0EC0 ADCB
0F00 SCI0
0F10 SCI1
0F20 SPI
0F30 COP
0F40 PFIU
0F60 DFIU
0F80 BFIU
OFA0 CLKGEN
0FBO GPIOA
0FCO GPIOB
OFE0 GPIOD
0FF0 GPIOE

(TIMER REGISTERS. OFFSET IS CHANNEL * 8)

0 CMP1
1 CMP2
2 CAP

3 LOAD
4 HOLD
5 CNTR
6 CTRL
7 SCR

(GPIO)

0 PUR

1 DR

2 DDR

3 PER
4TAR

5 IENR
6 IPOLR

71PR
8 IESR

(A/D CONVERTER)

0 ADCR1

1 ADCR2

2 ADZCC

3 ADLSTI1

4 ADLST2

5 ADSDIS

6 ADSTAT

7 ADLSTAT

8 ADZCSTAT
9 ADRSLTO
A ADRSLTI1
B ADRSLT2
C ADRSLT3
D ADRSLT4
E ADRSLTS

F ADRSLT6
10 ADRSLT7
11 ADLLMTO
12 ADLLMT1
13 ADLLMT2
14 ADLLMT3
15 ADLLMT4
16 ADLLMTS
17 ADLLMT6
18 ADLLMT7
19 ADHLMTO
1A ADHLMT1
1B ADHLMT2
1C ADHLMT3
1D ADHLMT4
1E ADHLMTS5
1F ADHLMT®6
20 ADHLMT7
21 ADOFS0
22 ADOFS1

23 ADOFS2
24 ADOFS3
25 ADOFS4
26 ADOFS5
27 ADOFS6
28 ADOFS7

(PWM)

0 PMCTL

1 PMFCTL

2 PMFSA

3 PMOUT

4 PMCNT

5 PWMCM

6 PWMVALO

7 PWMVALI

8§ PWMVAL2

9 PWMVAL3
A PWMVALA4
B PWMVALS
C PMDEADTM
D PMDISMAP1
E PMDISMAP2
F PMCFG

10 PMCCR

11 PMPORT

(QUAD)

0 DECCR
1 FIR

2 WTR

3 POSD

4 POSDH
5REV

6 REVH
7 UPOS

8 LPOS

9 UPOSH
A LPOSH
B UIR
CLIR

D IMR

E TSTREG

(SCI)

0 SCIBR
1 SCICR
2 SCISR
3 SCIDR

(SPI)

0 SPSCR
1 SPDSR
2 SPDRR
3 SPDTR

	ADVANCED PROGRAMMING
	IsoPod, MinPod, TinyPod, PlugaPod Memory Map
	ServoPod Memory Map
	Earlier IsoMax Kernels Memory Maps
	IsoMax v0.3 Memory Map
	IsoMax v0.6 Memory Map
	IsoMax v0.6 Memory Map – DSP56807

	Starting IsoMax State Machines
	Using INSTALL to start a State Machine
	Removing a State Machine
	Changing the IsoMax Speed
	Stopping and Restarting IsoMax
	Running More Than 16 Machines
	Using SCHEDULE-RUNS
	Autostarting State Machines

	IsoMax State Machine Language Reference
	Defining State Machines
	Declaring States
	Defining States
	Defining Input Conditions
	Defining Output Actions
	Defining Procedural Actions

	IsoMax Performance Monitoring
	An Example State Machine
	IsoMax Processing Time
	Exceeding the Allotted Time
	Automatic Overflow Processing
	Counting IsoMax Iterations

	Loop Indexes
	Defining a Loop Index
	Counting
	Using the Loopindex Value
	A "DO loop"Example
	An IsoMax Example
	Summary of Loopindex Operations

	Random Number Generator
	Implementation Details

	Autostarting an IsoMax Application
	The Autostart Search
	Writing an Application to be Autostarted
	Installing an Autostart Application
	Saving the RAM data for Autostart
	Removing an Autostart Application
	Bypassing the Autostart
	Summary

	SAVE-RAM
	Data Memory Map
	Saving the RAM image
	Flash erasure

	Restoring the RAM image
	Restoring the RAM image manually

	IsoPod™ Reset Sequence
	In summary:

	Object Oriented Extensions
	Action of an Object
	Defining a new class
	Defining an object
	Referencing an object
	Object Structure
	Example using ROM and RAM

	Machine Code Programming
	Assembler Programming
	CODE functions
	CODE-SUB functions
	CODE-INT functions
	Register Usage
	Calling High-Level Words from Machine Code

	Using CPU Interrupts in the IsoPod
	Interrupt Vectors in Flash ROM
	Writing Interrupt Service Routines
	The User Interrupt Vector Table
	Clearing the User Vector Table
	Installing an Interrupt Vector
	Precautions when using Interrupts

	Interrupt Handlers in High-Level Code
	How it Works
	Use of Stacks
	Use of Variables
	Re-Entrancy
	Example: Millisecond Timer

	Harvard Memory Model
	MEMORY OPERATORS
	WORD STRUCTURE
	VARIABLES
	<BUILDS DOES>

	Object Oriented Internals
	Dictionary Hiding
	Object Action

	CPU Registers

