
1. ADVANCED PROGRAMMING

1.1. IsoPod, MinPod, TinyPod, PlugaPod Memory Map

peripherals

0000
0292

0293
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
17FF

0000
53FF

Program
Flash

(Kernel)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

1800
1FFF

Data Flash
(User)

5400
7CFF

Program
Flash
(User)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

reserved

User Interrupt
Vectors

7D00
7DFF

1.2. ServoPod Memory Map

reserved

0000
0292

0293
0FFF

Data RAM
(Kernel)

Data RAM
(User)

1000
17FF

1800
1FFF

DATA MEMORY

2000
2FFF

0000
55FF

Program
Flash

(Kernel)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

3000
3FFF

Data Flash
(User)

7D00
7DFF

User Interrupt
Vectors

F000
F7DF

Program RAM
(User)

F7E0
F7FF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

peripherals

Program
Flash
(User)

5600
7CFF

Program
Flash
(User)

8000
EFFF

1.3. Earlier IsoMax Kernels Memory Maps

1.3.1. IsoMax v0.3 Memory Map

peripherals

0000
04E6

04E7
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
1BFF

0000
31FF

Program
Flash

(Kernel)

PROGRAM MEMORY

Data Flash
(Kernel)

1C00
1FFF

Data Flash
(User)

3200
7DFF

Program
Flash
(User)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

reserved

1.3.2. IsoMax v0.6 Memory Map

peripherals

0000
0245

0246
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
17FF

0000
13FF

Program
Flash
(Core)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

1800
1FFF

Data Flash
(User)

4000
7DFF

Program
Flash

(Kernel)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise availab le
for the user.

reserved

Program
Flash
(User)

 ‘803 and
‘805 only

2000
3FFF

Program
Flash
(User)

1400
1FFF

1.3.3. IsoMax v0.6 Memory Map – DSP56807

reserved

0000
0245

0246
0FFF

Data RAM
(Kernel)

Data RAM
(User)

1000
17FF

1800
1FFF

DATA MEMORY

2000
2FFF

0000
13FF

Program
Flash
(Core)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

3000
3FFF

Data Flash
(User)

4000
7DFF

Program
Flash

(Kernel)

F000
F7DF

Program RAM
(User)

F7E0
F7FF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise availab le
for the user.

peripherals

Program
Flash
(User)

1400
3FFF

Program
Flash
(User)

8000
EFFF

1.4. Starting IsoMax State Machines
When the IsoPod is reset, it disables all running state machines. You must explicitly start
your state machines as part of your application -- usually, in your autostart code. There
are two ways to do this: with INSTALL, or with SCHEDULE-RUNS.

1.4.1. Using INSTALL to start a State Machine
From IsoMax version 0.36 onward, the preferred method of starting state machines is
with INSTALL. After you have defined a state machine, you can start it by typing

state-name SET-STATE
INSTALL machine-name

Note that you must use SET-STATE to specify the starting state of the machine first.
This is because INSTALL will start the machine immediately. To start more machines,
simply INSTALL them one at a time:

state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3
etc.

Normally,1 the state machine will start running immediately at the default rate of 100 Hz.
SET-STATE and INSTALL can be used even while other state machines are running,
that is, INSTALL will add a state machine to an already-running list of state machines.

At present, up to 16 state machines can be INSTALLed. Attempting to INSTALL more
than 16 machines will result in the message "Too many machines." To install more
machines, you can use UNINSTALL or define a MACHINE-CHAIN (both described
below).

SET-STATE and INSTALL can be used interactively from the command interpreter, or
as part of a word definition.

1.4.2. Removing a State Machine
INSTALL builds a list of state machines which are run by IsoMax. UNINSTALL will
remove the last-added machine from this list. You can use UNINSTALL repeatedly to
remove more machines from the list, in a last-in first-out order. For example:

1 The commands COLD, SCRUB, and STOP-TIMER will halt IsoMax. The command SCHEDULE-RUNS
will override the INSTALLed state machines and dedicate IsoMax to running a particular machine chain.

INSTALL machine-name-1
 (SET-STATE commands have been omitted for clarity)
INSTALL machine-name-2
INSTALL machine-name-3
 . . .
UNINSTALL ...removes machine-name-3
UNINSTALL ...removes machine-name-2
UNINSTALL ...removes machine-name-1
UNINSTALL ...removes nothing

If there are no state machines running, UNINSTALL will simply print the message "No
machines."

To remove all the INSTALLed state machines with a single command, use NO-
MACHINES.

1.4.3. Changing the IsoMax Speed
When the IsoPod is reset, IsoMax returns to its default rate of 100 Hz -- that is, all the
state machines are performed once every 10 milliseconds. You can change this rate with
PERIOD. The command

 n PERIOD

will set the IsoMax period to "n" cycles of a 5 MHz clock. Thus,

 DECIMAL 5000 PERIOD ...will execute state machines once per millisecond

 DECIMAL 1000 PERIOD ...will execute state machines every 200 microsec.

...and so on. You can specify a period from 10 to 65535.2 (Be sure to specify the
DECIMAL base when entering large numbers, or you may get the wrong value.) The
default period is 50000.

1.4.4. Stopping and Restarting IsoMax
Certain commands will halt IsoMax processing:

the COLD command
the SCRUB command

2 Note, however, that very few state machines will be able to run in 2 microseconds (corresponding to 10
PERIOD). If you specify too small a PERIOD, no harm will be done, but IsoMax will "skip" periods as
needed to process the state machines.

This is necessary because either COLD or SCRUB can remove state machines from the
IsoPod memory.3 You can also halt IsoMax manually with the command STOP-TIMER.

In all these cases, the timer that runs IsoMax is halted. So, even if you INSTALL new
state machines, they won't run. To restart IsoMax you should use the command
ISOMAX-START. This command will

a) Remove all installed state machines, and
b) Start IsoMax at the default rate of 100 Hz.

Since ISOMAX-START removes all installed state machines, you must use it before you
use INSTALL. For example:

STOP-TIMER
 . . .
ISOMAX-START
state-name-1 SET-STATE
INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

Resetting the IsoPod does the same as ISOMAX-START: it will remove all installed state
machines, and reset the timer to the default rate of 100 Hz.

1.4.5. Running More Than 16 Machines
INSTALL can install both state machines and machine chains. A "machine chain" is a
group of state machines that is executed together. Machine chains, like state machines,
are compiled as part of the program:

MACHINE-CHAIN chain-name
 machine-name-1
 machine-name-2
 machine-name-3
END-MACHINE-CHAIN

This example defines a chain with the given name, and includes the three specified state
machines (which must already have been defined). A machine chain can include any
number of state machines.

You must still set the starting state for each of the state machines in a machine chain,
before you install the chain. So, you could start this example chain with:

3 The command FORGET can also remove state machines from memory. Be very careful when using
FORGET that you don't remove an active state machine; or use STOP-TIMER to halt IsoMax first.

state-name-1 SET-STATE ...a state in machine-name-1
state-name-2 SET-STATE ...a state in machine-name-2
state-name-3 SET-STATE ...a state in machine-name-3
INSTALL chain-name

You can of course UNINSTALL a machine chain, which will stop all of its state
machines.

1.4.6. Using SCHEDULE-RUNS
Prior to IsoMax version 0.36, the preferred method of starting state machines was with
SCHEDULE-RUNS.4 SCHEDULE-RUNS worked only with machine chains, and required
you to specify the IsoMax period when you started the machines:

EVERY n CYCLES SCHEDULE-RUNS chain-name

SCHEDULE-RUNS is still available in IsoMax, to allow older IsoMax programs to be
compiled. However, you should be aware that using SCHEDULE-RUNS will disable any
machines started with INSTALL. SCHEDULE-RUNS replaces any previously running
state machines -- including any previous use of SCHEDULE-RUNS -- and there is no
"uninstall" function for it. After using SCHEDULE-RUNS, the only ways to "reactivate"
the INSTALL function are

a) use the ISOMAX-START command, or
b) reset the IsoPod

ISOMAX-START will disable any machine chain started by SCHEDULE-RUNS, and will
re-initialize IsoMax. You can then INSTALL state machines as described above.

You can use the PERIOD command to change the speed of a machine chain started with
SCHEDULE-RUNS.

1.4.7. Autostarting State Machines
When the IsoPod is reset, all state machines are halted. (Strictly speaking, the IsoMax
timer is running, but the list of installed state machines is empty.) To automatically start
your state machines after a reset, you must write an autostart routine, which uses SET-
STATE and INSTALL to start your machines. For example:

: MAIN
state-name-1 SET-STATE
INSTALL machine-name-1

4 Some versions of IsoMax prior to version 0.36 have a different implementation of INSTALL. That
implementation does not work as described here, so for those versions of IsoMax we recommend you use
SCHEDULE-RUNS.

state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

. . . more startup code . . .
. . . application code . . .

; EEWORD

SAVE-RAM
HEX 7C00 AUTOSTART MAIN

In this example, the word MAIN is executed when the IsoPod is reset. The first thing it
does is to install three state machines. Note that these machines will begin running
immediately. If you need to do some initialization before starting these machines, that
code should appear before the first INSTALL command.

Refer to "Autostarting an IsoMax Application" for details about using SAVE-RAM and
AUTOSTART.

1.5. IsoMax State Machine Language Reference
This illustrates the different options for defining state machines, states, and state
transitions.

1.5.1. Defining State Machines
A state machine is defined by name:

 MACHINE <name-of-machine>

If the machine will be moved to Flash ROM, the MACHINE declaration must be
immediately followed by EEWORD:

 MACHINE <name-of-machine> EEWORD

1.5.2. Declaring States
Once a state machine has been defined, all of the states which will be part of that machine
must be named:

 ON-MACHINE <name-of-machine>
APPEND-STATE <name-of-new-state>
APPEND-STATE <name-of-new-state>
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG

The last example above illustrates a debugging option which is available for states. If
WITH-VALUE ... AT-ADDRESS are specified, the value ‘n’ will be stored at address ‘a’
when a transition is made to this state.5

If the state machine will be moved to Flash ROM, each state declaration must be
immediately followed by EEWORD, thus:

 ON-MACHINE <name-of-machine>
APPEND-STATE <name-of-new-state> EEWORD
APPEND-STATE <name-of-new-state> EEWORD
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG
 EEWORD

1.5.3. Defining States
After the states have been named, the transitions between the states can be defined:

5 This value is actually stored by either TO-HAPPEN, THIS-TIME, or NEXT-TIME, when they are used
by another state to select this as the new state. The tag value is not stored when SET-STATE is used.

 IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME

<boolean computation> must be a fragment of procedural (Forth) code which leaves a
true/false (nonzero/zero) condition on the stack. If the result of this computation is true,
the actions following CAUSES (a compound action and a new state) will be performed.

<compound action> is an optional fragment of procedural (Forth) code which is
performed when the transition condition is satisfied, and before the state transition
actually takes place. This must be stack-neutral (the completed action must take nothing
from, and leave nothing on, the stack).

Usually when a transition is made to a new state, that state will be evaluated -- that is, all
of its CONDITION clauses will be examined -- on the next IsoMax cycle. This is the
safest approach, and ensures that all state machines receive adequate service. This is
what happens when you specify the next state TO-HAPPEN or NEXT-TIME. (TO-
HAPPEN is a synonym for NEXT-TIME).

There may be very special cases when it is important to evaluate the new state
immediately upon a transition to that state. To achieve this you specify the next-state-
name THIS-TIME. This is a hazardous practice, however, since it’s very easy to
construct a loop of states that will never terminate. THIS-TIME is strongly discouraged,
and should only be used when absolutely necessary, and with great care.

If the state machine will be moved to Flash ROM, each transition definition must be
immediately followed by IN-EE (not EEWORD), thus:

 IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN IN-EE

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME IN-EE

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME IN-EE

1.5.4. Defining Input Conditions
Often the boolean condition in a state transition will simply involve testing an input pin,
an I/O register, or a memory location for a bit to be set or cleared. To make this
programming easier, you can define an input trinary:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary tests the value at the specified address, and returns a true/false result. To be
precise: the value at address “a” is fetched, and logically ANDed with the TEST-MASK.
This result is logically XORed with the DATA-MASK. If the result is nonzero, a true flag
is left on the stack; if the result is zero, a false flag is left.

You should think of this as follows: the TEST-MASK specifies which bit is of interest.
DATA-MASK specifies an optional inversion. Although these will usually act on a single
bit, you can certainly have masks with multiple bits. Just remember that if any bit in the
AND/XOR result is nonzero, the result will be logically “true.”

TEST-MASK, DATA-MASK, and AT-ADDRESS can be specified in any order. So, the
following are equivalent:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT
DEFINE <name> AT-ADDRESS <a> TEST-MASK <n> DATA-MASK <m> FOR-INPUT
DEFINE <name> DATA-MASK <m> TEST-MASK <n> AT-ADDRESS <a> FOR-INPUT

Input trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the boolean computation in a state transition. They
are merely provided as a convenience.

An input trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT
EEWORD

1.5.5. Defining Output Actions
Many actions involve setting or clearing a bit in an I/O register or a memory location. To
make this programming easier, you can define an output trinary in one of two forms:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AND-MASK <n> XOR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary sets and clears bits at the specified address.

The most commonly used output action is SET/CLR. When performed, any “1” bits in
the SET-MASK will be set at address a. Any “1” bits in the CLR-MASK will be cleared
at address a. You can think of this as lists of bits to be set and bits to be cleared in the

register (or memory location). If you need to only set or only clear bits, the unneeeded
mask should be zero. For example, to set the LSB at address $F00, you would use

DEFINE <name> SET-MASK 1 CLR-MASK 0 AT-ADDRESS HEX 0F00 FOR-OUTPUT

Avoid having the same bit in both the SET-MASK and the CLR-MASK; the result will be
indeterminate.6

An alternative action is AND/XOR. This can be used to change the state of bits,
depending on their current value. When performed, the AND-MASK is applied to the
value at address a. Then the XOR-MASK is applied to this result. The final result is
stored back to address a. You can thus set, clear, and toggle bits in one operation:

AND-MASK bit XOR-MASK bit function
 0 0 clears the bit
 0 1 sets the bit
 1 0 leaves the bit unchanged
 1 1 toggles (inverts) the bit

Remember that the AND is always applied before the XOR. Use this form with care: it is
very easy to clear bits inadvertently with a badly chosen AND-MASK.

SET-MASK, CLR-MASK, and AT-ADDRESS can be specified in any order. The
following are equivalent:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AT-ADDRESS <a> SET-MASK <n> CLR-MASK <m> FOR-OUTPUT
DEFINE <name> CLR-MASK <m> SET-MASK <n> AT-ADDRESS <a> FOR-OUTPUT

Likewise, AND-MASK, XOR-MASK, and AT-ADDRESS can be specified in any order.
But you cannot mix SET/CLR masks with AND/XOR masks.

Output trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the compound action in a state transition. They are
merely provided as a convenience.

An output trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
EEWORD

1.5.6. Defining Procedural Actions
For either test conditions or output actions, you may wish to specify procedural code.
There is a form of the trinary declaraction that allows this:

6 Currently, on the DSP5680x family, these operations are performed by reading memory, applying the
logical operations, and then writing the result back to memory. But there is no guarantee that future
versions of IsoMax, or versions for other processors, will be implemented in precisely the same way.

DEFINE <name> PROC ...procedural code... END-PROC

When used to specify a test condition, the procedural (Forth) code should leave a
true/false value on the stack. When used to specify an output action, the code should
expect nothing from the stack, and when finished, leave nothing on the stack.

PROCs can be used within state transitions and in procedural (Forth) code. You are not
required to use PROCs; they are provided as a convenience.7

These also can be moved to Flash ROM with EEWORD:

DEFINE <name> PROC ...procedural code... END-PROC EEWORD

7 DEFINE ... PROC ... END-PROC simply creates a normal Forth high-level (“colon”) definition.

1.6. IsoMax Performance Monitoring
The IsoMax system is designed to execute user-defined state machines at a regular
interval. This interval can be adjusted by the user with the PERIOD command. But how
quickly can the state machine be executed? IsoMax provides tools to measure this, and
also to handle the occasions when the state machine takes “too long” to process.

1.6.1. An Example State Machine
For the purposes of illustration, we’ll use a state machine that blinks the green LED:8

LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_GRN

ON-MACHINE SLOW_GRN
 APPEND-STATE SG_ON
 APPEND-STATE SG_OFF

IN-STATE SG_ON
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED OFF
 THEN-STATE SG_OFF
 TO-HAPPEN

IN-STATE SG_OFF
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON
 THEN-STATE SG_ON
 TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

This machine will execute at the default rate of DECIMAL 50000 PERIOD, or 100 Hz
(since the clock rate is 5 MHz).

1.6.2. IsoMax Processing Time
Every time IsoMax processes your state machines, it measures the total number of clock
cycles required. This is available to you in three variables:

TCFAVG This is a moving average of the measured processing time.9 It is reported
as a number of 5 MHz clock cycles.

8 This example uses LOOPINDEX and INSTALL, and therefore requires IsoMax v0.36 or later.
9 To be precise, TCFAVG is computed as the arithmetic mean of the latest measurement and the previous
average, i.e., Tavg[n+1] = (Tmeasured + Tavg[n]) / 2.

TCFMIN This is the minimum measured processing time (in 5 MHz cycles). Note
that this is not automatically reset when you install new state machines.
Therefore, after installing new state machines, store a large value in
TCFMIN to remove the old (false) minimum.

TCFMAX This is the maximum measured processing time (in 5 MHz cycles). This
is not automatically reset when you change state machines. Therefore,
after changing state machines, store a zero in TCFMAX to remove the old
(false) maximum.

To see this, enter the following commands while the SLOW_GRN state machine is
running:

DECIMAL 50000 TCFMIN !
0 TCFMAX !
TCFAVG ?
TCFMIN ?
TCFMAX ?

You may see an AVG and MIN time of about 630 cycles, and a MAX time near 1175
cycles.10 With a 5 MHz clock, this corresponds to a processing time of about 126 usec
(average) and 235 usec (maximum). The average is near the minimum because most of
the time, the state machine is performing no action. Only once every 100 iterations does
the CYCLE-COUNTER expire and force a change of LED state.

TCFAVG, TCFMIN, and TCFMAX return results in the same units used by PERIOD
(counts of a 5 MHz clock). This means you can use TCFMAX to determine the safe lower
bound of PERIOD. In this case, you could set PERIOD as low as 1175 decimal, and
IsoMax would always have time to process the state machine.

1.6.3. Exceeding the Allotted Time
What if, in this example, PERIOD had been set to 1000 decimal? Most of the time, the
state machine would be processed in less time, but once per second the LED transition
would require more time than was allotted.

IsoMax will handle this gracefully by “skipping” clock interrupts as long as the state
machine is still processing. With PERIOD set to 1000, an interrupt occurs every 200
usec. When the LED transition occurs, one interrupt will be skipped, and so there will be
400 usec (2000 cycles) between iterations of the state machine.

If this happens only rarely, it may not be of concern. But if it happens frequently, you
may have a problem with your state machine, or you may have set PERIOD too low. To
let you know when this is happening, IsoMax maintains an “overflow” counter:

10 These times were measured on an IsoPod running the v0.37 kernel. With no state machines
INSTALLed, the same kernel shows a TCFAVG of 88 cycles (17.6 usec). This represents the overhead to
respond to a timer interrupt, service it, and perform an empty INSTALL list.

TCFOVFLO A variable, reset to zero when IsoMax is started, and incremented every
time a clock interrupt occurs before IsoMax has completed state
processing. (In other words, this tells you the number of “skipped” clock
interrupts.)

You can see this in action by typing the following commands while the SLOW_GRN
state machine is still running:

TCFOVFLO ?
DECIMAL 1000 PERIOD
TCFOVFLO ?
TCFOVFLO ?
TCFOVFLO ?
50000 PERIOD
TCFOVFLO ?
TCFOVFLO ?

Be sure to type these commands, and don’t just upload them -- you need some time to
elapse between commands so that you can see the overflow counter increase. After you
change PERIOD back to 50000, the overflow counter will stop increasing.

1.6.4. Automatic Overflow Processing
If IsoMax overflows happen too frequently, you may wish your application to take some
corrective action. You could write a program to monitor the value of TCFOVFLO. But
IsoMax does this for you, and allows you to set an “alarm” value and an action to be
performed:

TCFALARM A variable, set to zero when IsoMax is started. If set to a nonzero value,
IsoMax will declare an “alarm” condition when the number of timer
overflows (TCFOVFLO) reaches this value. If set to zero, timer overflows
will be counted but otherwise ignored.

TCFALARMVECTOR A variable, set to zero when IsoMax is started. If set to a nonzero
value, IsoMax will assume that this is the CFA of a Forth word to be
executed when an “alarm” condition is declared. This Forth word should
be stack-neutral, that is, it should consume no values from the stack, and
should leave no values on the stack.

If set to zero, timer overflows will be counted but otherwise ignored.

Note that both of these values must be nonzero in order for alarm processing to take
place. Be particularly careful that TCFALARMVECTOR is set to a valid address; if it is set
to an invalid address it is likely to halt the IsoPod.

To continue with the previous example:

REDLED OFF
: TOO-FAST REDLED ON 50000 PERIOD ;
' TOO-FAST CFA TCFALARMVECTOR !
100 TCFALARM !

0 TCFOVFLO !

This defines a word TOO-FAST which is to be performed if too many overflows occur.
TOO-FAST will turn on the red LED, and will also change the IsoMax period to a large
(and presumably safe) value. The phrase ' TOO-FAST CFA returns the Forth CFA
of the TOO-FAST word; this can be stored as the TCFALARMVECTOR. Finally, the
alarm threshold is set to 100 overflows, and the overflow counter is reset.11

Now watch the LEDs after you type the command

1000 PERIOD

The slow blinking of the green LED will change to a rapid flicker for a few seconds.
Then the red LED will come on and the green LED will return to a slow blink. This was
caused by TOO-FAST being executed automatically when TCFOVFLO reached 100.

1.6.5. Counting IsoMax Iterations
It may be necessary for you to know how many times IsoMax has processed the state
machine. IsoMax provides another variable to help you determine this:

TCFTICKS A variable, set to zero when IsoMax is started, and incremented on every
IsoMax clock interrupt.

The frequency of the IsoMax clock interrupt is set by PERIOD; the default value is 100
Hz (50000 cycles of a 5 MHz clock). With this knowledge, you can use TCFTICKS for
time measurement. With DECIMAL 50000 PERIOD, the variable TCFTICKS will be
incremented 100 times per second.

Note that TCFTICKS is incremented whether or not an IsoMax overflow occurs. That is,
it counts the number of IsoMax clock interrupts, not the number of times the state
machine was processed. To compute the actual number of executions of the state
machine, you must subtract the number of “skipped” clock interrupts, thus:

TCFTICKS @ TCFOVFLO @ -

11 The test is for equality (TCFOVFLO=TCFALARM), not “greater than,” to ensure that the alarm condition
only happens once. The previous exercise left a large value in TCFOVFLO; if this is not reset to zero, the
alarm won’t occur until TCFOVFLO reaches 65535, “wraps around” back to zero, and then counts to 100.

1.7. Loop Indexes
A LOOPINDEX is an object that counts from a start value to an end value. Its name
comes from the fact that it resembles the I index of a DO loop. However,
LOOPINDEXes can be used anywhere, not just in DO loops. In particular, they can be
used in IsoMax state machines to perform a counting function.

1.7.1. Defining a Loop Index
You define a LOOPINDEX just like you define a variable:

 LOOPINDEX name

...where you choose the "name." For example,

 LOOPINDEX CYCLE-COUNTER

Once you have defined a LOOPINDEX, you can specify a starting value, an ending
value, and an optional step (increment) for the counter. For example, to specify that the
counter is to go from 0 to 100 in steps of 2, you would type:

 0 CYCLE-COUNTER START
 100 CYCLE-COUNTER END
 2 CYCLE-COUNTER STEP

You can specify these in any order. If you don't explicitly specify START, END, or
STEP, the default values will be used. The default for a new counter is to count from 0
to 1 with a step of 1. So, if you want to define a counter that goes from 0 to 200 with a
step of 1, all you have to change is the END value:

 LOOPINDEX BLINK-COUNTER
 200 BLINK-COUNTER END

If you use a negative STEP, the counter will count backwards. In this case the END value
must be less than the START value!

You can change the START, END, and STEP values at any time, even when the counter is
running.

1.7.2. Counting
The loopindex is incremented when you use the statement

 name COUNT

For example,

 CYCLE-COUNTER COUNT

COUNT will always return a truth value which indicates if the loopindex has passed its
limit. If it has not, COUNT will return false (zero). If it has, COUNT will return true
(nonzero), and it will also reset the loopindex value to the START value.

This truth value allows you to take some action when the limit is reached. This can be
used in an IF..THEN statement:

 CYCLE-COUNTER COUNT IF GRNLED OFF THEN

It can also be used as an IsoMax condition:

 CONDITION CYCLE-COUNTER COUNT CAUSES GRNLED OFF ...

In this latter example, the loopindex will be incremented every time this condition is
tested, but the CAUSES clause will be performed only when the loopindex reaches its
limit.

Note that the limit test depends on whether STEP is positive or negative. If positive, the
loopindex "passes" its limit when the count value + STEP value is greater than the END
value. If negative, the loopindex passes its limit when the count value + STEP value is
less than the END value.

In both cases, signed integer comparisons are used. Be careful that your loopindex limits
don't result in an infinite loop! If you specify an END value of HEX 7FFF, and a STEP
of 1, the loopindex will never exceed its limit, because in two's complement arithmetic,
adding 1 to 7FFF gives -8000 hex -- a negative number, which is clearly less than 7FFF.

Also, be careful that you always use or discard the truth value left by COUNT. If you just
want to increment the loopindex, without checking if it has passed its limit, you should
use the phrase

 CYCLE-COUNTER COUNT DROP

1.7.3. Using the Loopindex Value
Sometimes you need to know the value of the index while it is counting. This can be
obtained with the statement

 name VALUE

For example,

 CYCLE-COUNTER VALUE

Sometimes you need to manually reset the count to its starting value, before it reaches the
end of count. The statement

 name RESET

will reset the index to its START value. For example,

 CYCLE-COUNTER RESET

Remember that you don't need to explicitly RESET the loopindex when it reaches the end
of count. This is done for you automatically. The loopindex "wraps around" to the
START value, when the END value is passed.

1.7.4. A "DO loop"Example
This illustrates how a loopindex can be used to replace a DO loop in a program. This
also illustrates the use of VALUE to get the current value of the loopindex.

LOOPINDEX BLINK-COUNTER
DECIMAL 20 BLINK-COUNTER END
2 BLINK-COUNTER STEP
: TEST BEGIN BLINK-COUNTER VALUE . BLINK-COUNTER COUNT UNTIL ;

If you now type TEST, you will see the even numbers from 0 (the default START value)
to 20 (the END value).12 This is useful to show how the loopindex behaves with negative
steps:

-2 BLINK-COUNTER STEP
40 BLINK-COUNTER START
BLINK-COUNTER RESET
TEST

This counts backwards by twos from 40 to 20. Note that, because we changed the
START value of BLINK-COUNTER, we had to manually RESET it. Otherwise TEST
would have started with the index value left by the previous TEST (zero), and it would
have immediately terminated the loop (because it's less than the END value of 20).

1.7.5. An IsoMax Example
This example shows how a loopindex can be used within an IsoMax state machine, and
also illustrates one technique to "slow down" the state transitions. Here we wish to blink
the green LED at a rate 1/100 of the normal state processing speed. (Recall that IsoMax
normally operates at 100 Hz; if we were to blink the LED at this rate, it would not be
visible!)

LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_GRN

ON-MACHINE SLOW_GRN

12 Forth programmers should note that the LOOPINDEX continues up to and including the END value,
whereas a comparable DO loop continues only up to (but not including) its limit value.

 APPEND-STATE SG_ON
 APPEND-STATE SG_OFF

IN-STATE SG_ON
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED OFF
 THEN-STATE SG_OFF
 TO-HAPPEN

IN-STATE SG_OFF
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON
 THEN-STATE SG_ON
 TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

Here the loopindex CYCLE-COUNTER counts from 1 to 100 in steps of 1. It counts in
either state, and only when the count reaches its limit do we change to the other state (and
change the LED). That is, the end-of-count CAUSES the LED action and the change of
state. Since the counter is automatically reset after the end-of-count, we don't need to
explicitly reset it in the IsoMax code.

1.7.6. Summary of Loopindex Operations

LOOPINDEX name Defines a "loop index" variable with the given name. For example,
 LOOPINDEX COUNTER1

START
END
STEP

These words set the start value, the end value, or the step value (increment) for the
given loop index. All of these expect an integer argument and the name of a
loopindex variable. Examples:
 1 COUNTER1 START
 100 COUNTER1 END
 3 COUNTER1 STEP
These can be specified in any order. If any of them is not specified, the default
values will be used (START=0, END=1, STEP=1).

COUNT This causes the given loop index to increment by the STEP value, and returns a
true or false value: true (-1) if the end of count was reached, false (0) otherwise.
For example:
 COUNTER1 COUNT
End of count is determined after the loop index is incremented, as follows: If
STEP is positive, "end of count" is when the index is greater than the END value.
If STEP is negative, "end of count" is when the index is less than the END value.
Signed integer comparisons are used. In either case, when the end of count is
reached, the loop index is reset to its START value.

RESET This word manually resets the given loop index to its START value. Example:
 COUNTER1 RESET

VALUE This returns the current index value (counter value) of the given loop index. It
will return a signed integer in the range -32768..+32767. For example:
 COUNTER1 VALUEprints the loop index COUNTER1

1.8. Random Number Generator
(IsoMax version 0.75 and greater)

IsoMax includes a pseudo-random number generator that can be used to produce integer
(single or double precision) and floating-point random numbers.

RAND returns a random single precision unsigned integer in the range 0 to 65535.

DRAND returns a random double precision unsigned integer in the range 0 to 232-1.

FRAND returns a random floating point value in the range 0.0 to 1.0.

seed is a double-precision integer variable (a 2VARIABLE) which holds the
“seed” of the random number generator. If you initialize this to a known
value, you can generate a repeatable pseudo-random sequence. If you
wish to generate a different sequence each time you use the IsoPod, you
should initialize this to some random starting value.

Remember that this is a pseudo-random number generator. It has a reasonably long cycle
(232) and is adequate for many applications (like rolling “electronic dice”). But for
“serious” statistical modeling or simulation, you should write a more sophisticated
random number generator.

When making “smaller” random numbers from RAND or DRAND, it is important to
remember that the most significant bits are the most random. In other words, you should
not mask off the high bits and use the low bits. Instead, you should use division to reduce
the random number to a smaller range. For example, to simulate one throw of a die:

DECIMAL
: RAND6 (-- n) RAND 0 10922 UM/MOD SWAP DROP ;
: TOSS (-- n) BEGIN RAND6 DUP 5 > WHILE DROP REPEAT ;

The random number (0 to 65535) is divided by 10922, using unsigned arithmetic, to
produce a value in the range 0 to 5. The probabilities of getting 0 to 5 will be equal.
Since there are six RAND values (65532-65535) which will produce a result of 6, TOSS is
programmed to reject those, and will throw the die again if they occur.

1.8.1. Implementation Details
The pseudo-random number generator uses a simple “linear congruential” algorithm, as
described by D. E. Knuth in The Art of Computer Programming. The recurrence relation
for this generator is

 Xn+1 = (aX n + c) mod m

where a=1664525, c=1, and m=232 (the double-precision integer word size). These
coefficients meet Knuth’s theoretical requirements and have been found to produce well-
distributed random numbers.13

1.9. Autostarting an IsoMax Application

1.9.1. The Autostart Search
When the IsoPod is reset, it searches the Program Flash ROM for an autostart pattern.
This is a special pattern in memory which identifies an autostart routine. It consists of
the value $A55A, followed by the address of the routine to be executed.

 xx00: $A55A
 xx01: address of routine

It must reside on an address within Program ROM which is a multiple of $400, i.e.,
$0400, $0800, $0C00, ... $7400, $7800, $7C00.

The search proceeds from $0400 to $7C00, and terminates when the first autostart pattern
is found. This routine is then executed. If the routine exits, the IsoMax interpreter will
then be started.

1.9.2. Writing an Application to be Autostarted
Any defined word can be installed as an autostart routine. For embedded applications,
this routine will probably be an endless loop that never returns.

Here's a simple routine that reads characters from terminal input, and outputs their hex
equivalent:

 : MAIN HEX BEGIN KEY . AGAIN ; EEWORD

Note the use of EEWORD to put this routine into Flash ROM. An autostart routine must
reside in Flash ROM, because when the IsoPod is powered off, the contents of RAM will
be lost. If you install a routine in Program RAM as the autostart routine, the IsoPod will
crash when you power it on. (To recover from such a crash, see "Bypassing the
Autostart" below.)

Because this definition of MAIN uses a BEGIN...AGAIN loop, it will run forever. You
can define this word from the keyboard and then type MAIN to try it out (but you'll have
to reset the IsoPod to get back to the command interpreter). This is how you would write
an application that is to run forever when the IsoPod is reset.

13 Per Knuth, these coefficients were proposed by Lavaux and Janssens for 32-bit machines, and the
corresponding generator measures well on the “spectral test” for random number distribution. See D. E.
Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms, Second Edition, Chapter
3, pp. 102-103 and 170-171.

You can also write an autostart routine that exits after performing some action. One
common example is a routine that starts some IsoMax state machines. For this
discussion, we'll use a version of MAIN that returns when an escape character is input:

 HEX
: MAIN2 HEX BEGIN KEY DUP . 1B = UNTIL ; EEWORD

In this example the loop will run continuously until the ESC character is received, then it
exits normally. If this is installed as the autostart routine, when it exits, the IsoPod will
proceed to start the IsoMax command interpreter.

1.9.3. Installing an Autostart Application
One the autostart routine is written, it can be installed into Flash ROM with the command

 address AUTOSTART routine-name

This will build the autostart pattern in ROM. The address is the location in Flash ROM
to use for the pattern, and must be a multiple of $400. Often the address $7C00 is used.
This leaves the largest amount of Flash ROM for the application program, and leaves the
option of later programming a new autostart pattern at a lower address. (Remember, the
autostart search starts low and works up until the first pattern found, so an autostart at
$7800 will override an autostart at $7C00.) So, for example, you could use

 HEX 7C00 AUTOSTART MAIN2

to cause the word MAIN2 to be autostarted. (Note the use of the word HEX to input a hex
number.)

Try this now, and then reset the IsoPod. You'll see that no "IsoMax" prompt is displayed.
If you start typing characters at the terminal, you'll see the hex equivalents displayed.
This will continue forever until you hit the ESC key, at which point the "IsoMax" prompt
is displayed and the IsoPod will accept commands.

Note: starting with IsoMax version 0.61, you do not need to provide an address
for AUTOSTART. It will always use a default address for the autostart pattern.
This example will still work, but you’ll find the value 7C00 left on the stack
because it wasn’t used.

1.9.4. Saving the RAM data for Autostart
Power the IsoPod off, and back on, and observe that the autostart routine still works.
Then press the ESC key to exit to the IsoMax command interpreter. Now try typing
MAIN2. IsoMax doesn't recognize the word, even though you programmed it into Flash
ROM! If you type WORDS you won't see MAIN2 in the listing. Why?

The reason is that some information about the words you have defined is kept in RAM14.
If you just reset the board from MaxTerm, the RAM contents will be preserved. But if
you power the board off and back on, the RAM contents will be lost, and IsoMax will
reset RAM to known defaults. If you type WORDS after a power cycle, all you will see
are the standard IsoMax words: all of your user-defined words are lost.

To prevent this from happening, you must save the RAM data to be restored on reset.
This is done with the word SAVE-RAM:

 SAVE-RAM

This can be done either just before, or just after, you use AUTOSTART. SAVE-RAM
takes a "snapshot" of the RAM contents, and stores it in Data Flash ROM. Then, the next
time you power-cycle the board, those preserved contents will be reloaded into RAM.
This includes both the IsoMax system variables, and any variables or data structures you
have defined.

Note: a simple reset will not reload the RAM. When the IsoPod is reset, it first checks to
see if it has lost its RAM data. Only if the RAM has been corrupted -- as it is by a power
loss -- will the IsoPod attempt to load the SAVE-RAM snapshot. (And only if there is no
SAVE-RAM snapshot will it restore the factory defaults.) If you use MaxTerm to reset
the IsoPod, the RAM contents will be preserved.

1.9.5. Removing an Autostart Application
Don't try to reprogram MAIN2 just yet. Even though the RAM has been reset to factory
defaults, MAIN2 is still programmed into Flash ROM, and IsoMax doesn't know about it.
In fact, if you try to redefine MAIN2 at this point, you might crash the IsoPod, as it
attempts to re-use Flash ROM which hasn't been erased. (To recover from this, see
"Bypassing the Autostart," below.)

To completely remove all traces of your previous work, use the word SCRUB:

 SCRUB

This will erase all of your definitions from Program Flash ROM -- including any
AUTOSTART patterns which have been stored -- and will also erase any SAVE-RAM
snapshot from Data Flash ROM. Basically, the word SCRUB restores the IsoPod to its
factory-fresh state.

1.9.6. Bypassing the Autostart
What if your autostart routine locks up? If you can't get access to the IsoMax command
interpreter, how do you SCRUB the application and restore the IsoPod to usability?

14 To be specific, what is lost is the LATEST pointer, which always points to the last-defined word in the
dictionary linked list. The power-up default for this is the last-defined word in the IsoMax kernel.

You can bypass the autostart search, and go directly to the IsoMax interpreter, by
jumpering together pins 2 and 4 on connector J3, and then resetting the IsoPod. You can
do this with a common jumper block:

CPU

J3 1

J2 1

PIN 2 (GND)
PIN 4 (SCLK)

IsoPod V1

CPU

J5 1

J4
1

PIN 2 (GND)
PIN 4 (SCLK)

IsoPod V2

This connects the SCLK/PE4 pin to ground. When the IsoPod detects this condition on
reset, it does not perform the autostart search.

Note that this does not erase your autostart application or your SAVE-RAM snapshot from
Flash ROM. These are still available for your inspection15. If you remove the jumper

15 The IsoPod RAM will be reset to factory defaults instead of to the saved values, but you can still
examine the SAVE-RAM snapshot in Flash ROM.

block and reset the IsoPod, it will again try to run your autostart application. (This can be
a useful field diagnostic tool.)

To remove your application and start over, you'll need to use the SCRUB command. The
steps are as follows:

1. Connect a terminal (or MaxTerm) to the RS-232 port.

2. Jumper pins 2 and 4 on J3.

3. Reset the IsoPod. You will see the "IsoMax" prompt.

4. Type the command SCRUB .

5. You can now remove the jumper from J3.

1.9.7. Summary
Use EEWORD to ensure that all of your application routines are in Flash ROM.

When your application is completely loaded, use SAVE-RAM to preserve your RAM data
in Flash ROM.

Use address AUTOSTART routine-name to install your routine for
autostarting. "address" must be a multiple of $0400 in empty Flash ROM; HEX 7C00 is
commonly used.

To clear your application and remove the autostart, use SCRUB. This restores the IsoPod
to its factory-new state.

If the autostart application locks up, jumper together pins 2 and 4 of J3, and reset the
IsoPod. This will give you access to the IsoMax command interpreter.

1.10. SAVE-RAM
The IsoPod contains 4K words of nonvolatile “Flash” data storage. This can be used to
save system variables and your application variables so that they are automatically
initialized when the IsoPod is powered up. This is done with the word SAVE-RAM.

1.10.1. Data Memory Map
The internal RAM of the IsoPod is divided into three regions: kernel buffers, User
Variables, and application variables.

Data Flash ROM

04B0*

0550*

0000

07FF

Data RAM

kernel
variables,
buffers,
stacks

application
variables and

data
structures

User Variables

1FFF

1CB0*

1000

1C00*
erased

RAM image

1800

available for
application

*typical addresses; may vary
depending on IsoMax version

Kernel buffers include the stacks, working “registers,” and other scratch data that are
used by the IsoMax interpreter. These are considered “volatile” and are always cleared
when the IsoPod is powered up. These are also private to IsoMax and not available to
you.

“User Variables” are IsoMax working variables which you may need to examine or
change. These include such values as the current number base (BASE), the current ROM

and RAM allocation pointers, and the Terminal Input Buffer. This region also includes
RAM for the IsoMax state machine and the predefined IsoPod I/O objects.

Application data is whatever variables, objects, and buffers you define in your application
program. This can extend up to the end of RAM (address 07FF hex in the IsoPod).

1.10.2. Saving the RAM image
The word SAVE-RAM copies the User Variables and application data to the end of Data
Flash ROM. All of internal RAM, starting at the first User Variable (currently C/L) and
continuing to the end of RAM, is copied to corresponding addresses in the Flash ROM.

Note that this will copy all VARIABLEs and the RAM contents of all objects, but it will
not copy the stacks.

Normally you will use SAVE-RAM to take a “snapshot”of your RAM data when all your
variables are initialized and your application is ready to run.

1.10.2.1. Flash erasure
Because the SAVE-RAM uses Flash memory, it must erase the Flash ROM before it can
copy to it. This is automatically done by SAVE-RAM, and you need not perform any
explicit erase function. However, you should be aware that SAVE-RAM will erase more
Flash ROM than is needed for the RAM image.

Flash ROM is erased in “pages” of 256 words each. To ensure that all of the RAM image
is erased, SAVE-RAM must erase starting at the next lower page boundary. A page
boundary address is always of the form $XX00 (the low eight bits are zero). So, in the
illustrated example, Flash ROM is erased starting at address $1C00.

If you use Data Flash ROM directly in your application, you can be sure that your data
will be safe if you restrict your usage to addresses $1000-$17FF. Some of the space
above $1800 is currently unused, but this is not guaranteed for future IsoMax releases.

1.10.3. Restoring the RAM image
The IsoPod will automatically copy the saved RAM image from Flash ROM back to
RAM when it is first powered up. This will occur before your application program is
started. So, you can use SAVE-RAM to create an “initial RAM state” for your
application.

If the IsoPod is reset and the RAM contents appear to be valid, the saved RAM image
will not be used. This may happen if the IsoPod receives a hardware reset signal while
power is maintained. Usually this is the desired behavior.

1.10.3.1. Restoring the RAM image manually
You can force RAM to be copied from the saved image by using RESTORE-RAM. This
does exactly the reverse of SAVE-RAM: it copies the contents of Data Flash ROM to Data
RAM. The address range copied is the same as used by SAVE-RAM.

So, if your application needs RAM to be initialized on every hardware reset (and not just
on a power failure), you can put RESTORE-RAM at the beginning of your autostart
routine.

Note: do not use RESTORE-RAM if SAVE-RAM has not been performed. This will cause
invalid data to be written to the User Variables (and to your application variables as
well), which will almost certainly crash the IsoPod. For most applications it is sufficient,
and safer, to use the default RAM restore which is built into the IsoPod kernel.

1.11. IsoPod™ Reset Sequence
The IsoPod employs a flexible initialization that gives you many options for starting and
running application programs. Sophisticated applications can elect to run with or without
IsoMax, and with the default or custom processor initialization. This requires some
knowledge of the steps that the IsoPod takes upon a processor reset:

1. Perform basic CPU initialization. This includes the PLL clock generator and the
RS232 serial port.

2. Do the QUICK-START routine. If a QUICK-START vector is present in RAM,
execute the corresponding routine. QUICK-START is designed to be used before any
other startup code, normally just to provide some additional initialization. In particular,
this is performed before RAM is re-initialized. This gives you the opportunity to save
any RAM status, for example on the occurrence of a watchdog reset. Note that a power
failure which clears the RAM will also clear the QUICK-START vector.

3. Stop IsoMax. This is in case of a "software reset" that would otherwise leave the
timer running.

4. Check for "autostart bypass." Configure the SCLK/PE4 pin as an input with pullup
resistor. If the SCLK/PE4 pin then reads a continuous "0" (ground level) for 1
millisecond, skip the autostart sequence and "coldstart" the IsoPod. This will initialize
RAM to factory defaults and start the IsoMax interpreter.

This is intended to recover from a situation where an autostart application locks up
the IsoPod. Simply jumper the SCLK/PE4 pin to ground, and reset the IsoPod. This
will reset the RAM and start the interpreter, but please note that it will not erase any
Flash ROM. Flash ROM can be erased with the SCRUB command from the IsoMax
interpreter.

This behavior should be kept in mind when designing hardware around the IsoPod. If
the IsoPod is installed as an SPI master, or if the SCLK/PE4 pin is used as a
programmed output, there will be no problem. If the IsoPod is installed as an SPI
slave, the presence of SPI clock pulses will not cause a coldstart, but a coldstart will
happen if SCLK is held low in the "idle" state and a CPU reset occurs. For this
reason, if the IsoPod is an SPI slave, we recommend configuring the SPI devices with
CPOL=1, so the "idle" state of SCLK is high. If the SCLK/PE4 pin is used as a
programmed input, avoid applications where this pin might be held low when a CPU
reset occurs.

If SCLK/PE4 is not grounded, proceed with the autostart sequence.

5. Check the contents of RAM and initialize as required.

a. If the RAM contents are valid16, use them. This will normally be the case if the
CPU is reset with no power cycle, e.g., reset by MaxTerm, a watchdog, or an external
reset signal.

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash
ROM. If this RAM image is valid, use it. This gives you a convenient method to
initialize your application RAM.

c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults.
Note that this will reset the dictionary pointer but will not erase any Flash ROM.

6. Look for a "boot first" routine. Search for an $A44A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "boot first" routine. IsoMax is
not running at this point.

a. If the "boot first" routine never exits, only it will be run.

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the
autostart sequence.

7. Start IsoMax with an "empty" list of state machines. After this, you can begin
INSTALLing state machines. Any state machines INSTALLed before this point will be
disabled.

8. Look for an "autostart" routine. Search for an $A55A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "autostart" routine.

a. If the "autostart" routine never exits, only it will be run. (Of course, any IsoMax
state machines INSTALLed by this routine will also run.)

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax
interpreter.

1.11.1. In summary:
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip
initialization which must occur immediately.

Use an $A44A "boot first" vector for initialization which must precede IsoMax
activation, but which needs initialized RAM.

Use an $A55A "autostart" vector to install IsoMax state machines, and for your main
application program.

To bypass the autostart sequence, jumper SCLK/PE4 to ground.

16 RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234.

1.12. Object Oriented Extensions
These words provide a fast and compact object-oriented capability to MaxForth. It
defines Forth words as "methods" which are associated only with objects of a specific
class.

1.12.1. Action of an Object
An object is very much like a <BUILDS DOES> defined word. It has a user-defined data
structure which may involve both Program ROM and Data RAM. When it is executed, it
makes the address of that structure available (though not on the stack...more on this in a
moment).

What makes an object different is that there is a "hidden" list of Forth words which can
only be used by that object (and by other objects of the same class). These are the
"methods," and they are stored in a private wordlist. Note that this is not the same as a
Forth "vocabulary." Vocabularies are not used, and the programmer never has to worry
about word lists.

Each method will typically make several references to an object, and may call other
methods for that object. If the object's address were kept on the stack, this would place a
large burden of stack management on the programmer. To make object programming
simpler and faster, the address of the current object is stored in a variable, OBJREF. The
contents of this variable (the address of the current object) can always be obtained with
the word SELF.

When executed (interpreted), an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Store the object's address into OBJREF.
After this, the private methods of the object can be executed. (These will remain
available until an object of a different class is executed.)

When compiled, an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Compile code into the current definition which will store the object's address into

OBJREF.
After this, the private methods of the object can be compiled. (These will remain
available until an object of a different class is compiled.) Note that both the object
address and the method are resolved at compile time. This is "early binding" and results
in code that is as fast as normal Forth code.

In either case, the syntax is identical:
 object method
For example:
 REDLED TOGGLE

1.12.2. Defining a new class

BEGIN-CLASS name

Words defined here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

PUBLIC

Words defined here will be visible at all times.
These will normally be the "objects" which are used in the main program.

END-CLASS name

1.12.3. Defining an object

OBJECT name This defines a Forth word "name" which will be an object of the

current class. The object will initially be "empty", that is, it will have no
ROM or RAM allocated to it. The programmer can add data structure to
the object using P, , PALLOT and ALLOT, in the same manner as for
<BUILDS DOES> words. Like <BUILDS DOES>, the action of an
object is to leave its Program memory address.

1.12.4. Referencing an object

SELF This will return the address of the object last executed. Note that this is an

address in Program memory. If the object will use Data RAM, it is the
responsibility of the programmer to store a pointer to that RAM space.
See the example below.

1.12.5. Object Structure
An object may have associated data in both Program and Data spaces. This allows ROM
parameters which specify the object (e.g., port numbers for an I/O object); and private
variables ("instance variables") which are associated with the object. By default, objects
return their Program (ROM) address. If there are RAM variables associated with the
object, a pointer to those variables must be included in the ROM data.

Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

Note that although OBJECT creates a pointer to Program space, it does not reserve any
Program or Data memory. That is the responsibility of the programmer. This is done in
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or
PALLOT to add cells to Program space and , or ALLOT to add cells to Data space. The
programmer can use OBJECT to build a custom defining word for each class. See the
example below.

1.12.6. Example using ROM and RAM
This is an example of an object which has both ROM data (a port address) and RAM data
(a timebase value).

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC
 0D00 TIMER TA0
 0D08 TIMER TA1
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT.
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that
RAM (HERE) into Program memory (P,). This builds the RAM pointer as shown above.
Finally, it stores the I/O port address "a" into the second cell of Program memory (the
second P,). Each object built with TIMER will have its own copy of this data structure.

After the object is executed, SELF will return the address of the Program data for that
object. Because we've stored a RAM pointer as the first Program cell, the phrase SELF
P@ will return the address of the RAM data for the object. It is not required that the first
Program cell be the RAM pointer, but this is strongly recommended as a programming
convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object
(since that was stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also
build them into other Forth words. All of this will normally go in the "private" class
dictionary:

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;

 : TMR_PERIOD (-- a) SELF P@ ; (RAM variable for this timer)
 : BASEADDR (-- a) SELF CELL+ P@ ; (I/O addr for this timer)
 : TMR_SCR (-- a) BASEADDR 7 + ; (Control register)

 : SET-PERIOD (n --) TMR_PERIOD ! ;
 : ACTIVE-HIGH (--) 0202 TMR_SCR CLEAR-BITS ;
PUBLIC
 0D00 TIMER TA0 (Timer with I/O address 0D00)
 0D08 TIMER TA1 (Timer with I/O address 0D08)
END-CLASS TIMERS

After this, the phrase 100 TA0 SET-PERIOD will store the RAM variable for timer
object TA0, and 200 TA1 SET-PERIOD will store the RAM variable for timer object
TA1. TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1
ACTIVE-HIGH will clear bits in timer A1 (at port address 0D0F).

In a WORDS listing, only TA0 and TA1 will be visible. But after executing TA0 or TA1,
all of the words in the TIMERS class will be found in a dictionary search.

Because the "methods" are stored in private word lists, you can re-use method names in
different classes. For example, it is possible to have an ON method for timers, a different
ON method for GPIO pins, a third ON method for PWM pins, and so on. When the object
is named, it will automatically select the correct set of methods to be used! Also, if a
particular method has not been defined for a given object, you will get an error message
if you attempt to use that method with that object. (One caution: if there is word in the
Forth dictionary with the same name, and there is no method of that name, the Forth word
will be found instead. An example of this is TOGGLE. If you have a TOGGLE method,
that will be compiled. But if you use an object that doesn't have a TOGGLE method,
Forth's TOGGLE will be compiled. For this reason, methods should not use the same
names as "ordinary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names.
For example, you can't have a Timer named A0 and a GPIO pin named A0. You must
give them unique names like TA0 and PA0.

1.13. Machine Code Programming
IsoMax allows individual words to be written in machine code as well as “high-level”
language code. Such words are indistinguishable in function from high-level words, and
may be used freely in application programs and state machines.

1.13.1. Assembler Programming
The IsoPod uses the Motorola DSP56F805 microprocessor. The machine language of
this processor is described in Motorola's DSP56800 16-Bit Digital Signal Processor
Family Manual, available at

<http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf>.

IsoMax does not include a symbolic assembler for this processor. You must use an
external assembler to convert your program to the equivalent hexadecimal machine code,
and then insert these numeric opcodes and operands into your IsoMax source code.17 For
an example, let's use an assembler routine to stop Timer D2:

 ; Timer/Counter
 ; -------------
 ; Timer control register
 ; 000x xxxx xxxx xxxx = no count
 andc #$1FFF,X:$0D76 ; TMRD2_CTRL

 ; Timer status & control register
 ; Clear TCF flag, clear interrupt enable flag
 bfclr #$8000,X:$0D77 ; TMRD2_SCR clear TCF
 bfclr #$4000,X:$0D77 ; TMRD2_SCR clear TCFIE

Translated to machine code, this is:

80F4 andc #$1FFF,X:$0D76
0D76
E000
80F4 bfclr #$8000,X:$0D77
0D77
8000
80F4 bfclr #$4000,X:$0D77
0D77
4000

17 If you wish to translate your programs manually to machine code, a summary chart of
DSP56800 instruction encoding is given at the end of this manual.

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

To compile this manually into an IsoMax word, you must append each hexadecimal value
to the dictionary with the P, operator. (The “P” refers to Program space, where all
machine code must reside.) You can put more than one value per line:

80F4 P, 0D76 P, E000 P,
80F4 P, 0D77 P, 8000 P,
80F4 P, 0D77 P, 4000 P,

All that remains is to add this as a word to the IsoMax dictionary, and to return from the
assembler code to IsoMax. There are three ways to do this: with CODE, CODE-SUB, and
CODE-INT.

1.13.2. CODE functions
The special word CODE defines a machine language word as follows:

CODE word-name

 (machine language for your word)

 (machine language for JMP NEXT)

END-CODE

Machine code words that are created with CODE must return to IsoMax by performing a
jump to the special address NEXT. In IsoMax versions 0.52 and higher, this is address
$0080. Earlier versions of IsoMax do not support NEXT and you must use CODE-SUB,
described below, to write machine code words.

An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080,
and our example STOP-TIMERD2 word could be written as follows:

HEX
CODE STOP-TIMERD2
 80F4 P, 0D76 P, E000 P,
 80F4 P, 0D77 P, 8000 P,
 80F4 P, 0D77 P, 4000 P,
 E984 P, 0080 P, (JMP NEXT)
END-CODE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

1.13.3. CODE-SUB functions
The special word CODE-SUB is just like CODE, except that the machine code returns to
IsoMax with an ordinary RTS instruction. This can be useful if you need to write a
machine code routine that can be called both from IsoMax and from other machine code

routines. It's also useful if the NEXT address is not available (as in IsoMax versions prior
to 0.52). The syntax is similar to CODE:

CODE-SUB word-name

 (machine language for your word)

 (machine language for RTS)

END-CODE

An RTS instruction is $EDD8, so STOP-TIMERD2 could be written with CODE-SUB as
follows:

HEX
CODE-SUB STOP-TIMERD2
 80F4 P, 0D76 P, E000 P,
 80F4 P, 0D77 P, 8000 P,
 80F4 P, 0D77 P, 4000 P,
 EDD8 P, (RTS)
END-CODE

This example will work in all versions of IsoMax.

1.13.4. CODE-INT functions
CODE-INT is just like CODE-SUB, except that the machine code returns to IsoMax with
an RTI (Return from Interrupt) instruction, $EDD9. This is useful if you need to write a
machine code interrupt handler that can also be called directly from IsoMax. CODE-INT
is only available on IsoMax versions 0.52 and later.

HEX
CODE-INT STOP-TIMERD2
 80F4 P, 0D76 P, E000 P,
 80F4 P, 0D77 P, 8000 P,
 80F4 P, 0D77 P, 4000 P,
 EDD9 P, (RTI)
END-CODE

To obtain the address of the machine code after it is compiled, use the phrase

 ' word-name CFA 2+

Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD
before trying to obtain the address of the machine code. EEWORD will change this
address.

1.13.5. Register Usage
In the current version of IsoMax software, all DSP56800 address and data registers may
be used in your CODE and CODE-SUB words. You need not preserve R0-R3, X0, Y0,
Y1, A, B, or N. Do not change the “mode” registers M01 or OMR, and do not change the
stack pointer SP.

Future versions of IsoMax may add more restrictions on register use. If you are
concerned about compatibility with future kernels, you should save and restore all
registers that your machine code will use.

CODE-INT words are expected to be called from interrupts, and so they should save any
registers that they use.

1.13.6. Calling High-Level Words from Machine Code
You can call a high-level IsoMax word from within a machine-code subroutine. This is
done by calling the special subroutine ATO4 with the address of the word you want to
execute.18 This address must be a Code Field Address (CFA) and is obtained with the
phrase

 ' word-name CFA

This address must be passed in register R0. You can load a value into R0 with the
machine instruction $87D0, $xxxx (where xxxx is the value to be loaded).

The address of the ATO4 routine can be obtained from a constant named ATO4. You can
use this constant directly when building machine code. The opcode for a JSR instruction
is $E9C8, $aaaa where aaaa is an absolute address. So, to write a CODE-SUB routine
that calls the IsoMax word DUP, you could write:

HEX
CODE-SUB NEWDUP
 87D0 P, ' DUP CFA P, (move DUP CFA to R0)
 E9C8 P, ATO4 P, (JSR ATO4)
 EDD8 P, (RTS)
END-CODE

Observe that the phrases ' DUP CFA and ATO4 are used within the CODE-SUB to
generate the proper addresses where required.

18The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

1.14. Using CPU Interrupts in the IsoPod
This applies to IsoPod kernel v0.38 and later.

1.14.1. Interrupt Vectors in Flash ROM
The DSP56F805 processor used in the IsoPod supports 64 interrupt vectors, in the first
128 locations of Flash ROM. Each vector is a two-word machine instruction, normally a
JMP instruction to the corresponding interrupt routine. When an interrupt occurs, the
CPU jumps directly to the appropriate address ($00-$7E) in the vector table.

Since this vector table is part of the IsoPod kernel, it cannot be altered by the user. Also,
some interrupts are required for the proper functioning of the IsoPod, and these vectors
must never be changed. So the IsoPod includes a “user” vector table at the high end of
Flash ROM (addresses $7D80-7DFE). This is exactly the same as the “kernel” vector
table, except that certain “reserved for IsoPod” interrupts have been excluded. The user
vector table can be programmed, erased, and reprogrammed freely by the user, as long as
suitable precautions are taken.

1.14.2. Writing Interrupt Service Routines
Interrupt service routines must be written in DSP56F805 machine language, and must
end with an RTI (Return from Interrupt) instruction. Some peripherals will have
additional requirements; for example, many interrupt sources need to be explicitly cleared
by the interrupt service routine. For more information about interrupt service routines,
refer to the Motorola DSP56800 16-Bit Digital Signal Processor Family Manual (Chapter
7), and the Motorola DSP56F801/803/805/807 16-Bit Digital Signal Processor User’s
Manual.

You should be aware that the IsoPod uses certain channels in the Interrupt Priority
controller:

 The IsoMax Timer (Timer C319) is assigned to Interrupt Priority Channel 3.
 SCI (RS-232) and SPI serial I/O is assigned to Interrupt Priority Channel 4.
 The I/O Scheduling Timer20 is assigned to Interrupt Priority Channel 5.

These channels may be shared by other peripherals. However, it is important to
remember that these channels are enabled by the IsoMax kernel after a reset, and must
never be disabled. You should not use the corresponding bits in the Interrupt Priority
Register as interrupt enable/disable bits.

19 Timer D3 on IsoPods before version 0.65.
20 Version 0.69 and later.

Interrupt channels 0, 1, 2, and 6 are reserved for your use. The IsoMax kernel does not
use them, and you may assign, enable, or disable them freely. Channel 0 has the lowest
priority, and 6 the highest.21

1.14.3. The User Interrupt Vector Table
The user vector table is identical to the kernel (CPU) vector table, except that it starts at
address $7D80 instead of address $0. Each interrupt vector is two words in this table,
sufficient for a machine language jump instruction. For all interrupts which are not
reserved by IsoMax, the kernel vector table simply jumps to the corresponding location in
the user vector table. (Remember that this adds the overhead of one absolute jump
instruction -- 6 machine clock cycles -- to the interrupt service.)

Note: IsoPod kernels version 0.37 and earlier do not support a user vector table.

Note: This table is subject to change. Future versions of the IsoPod software may
reserve more of these interrupts for internal use, as more I/O functions are added to
the IsoPod kernel.

Interrupt
Number

User
Vector

Address

Kernel
Vector

Address

Description

0 $00 reset - reserved for IsoPod
1 $7D82 $02 COP Watchdog reset
2 $7D84 $04 reserved by Motorola
3 $06 illegal instruction - reserved for IsoPod
4 $7D88 $08 Software interrupt
5 $7D8A $0A hardware stack overflow
6 $7D8C $0C OnCE Trap
7 $7D8E $0E reserved by Motorola
8 $7D90 $10 external interrupt A
9 $7D92 $12 external interrupt B

10 $7D94 $14 reserved by Motorola
11 $7D96 $16 boot flash interface
12 $7D98 $18 program flash interface
13 $7D9A $1A data flash interface
14 $7D9C $1C MSCAN transmitter ready
15 $7D9E $1E MSCAN receiver full
16 $7DA0 $20 MSCAN error
17 $7DA2 $22 MSCAN wakeup
18 $7DA4 $24 reserved by Motorola
19 $26 GPIO E - reserved for IsoPod
20 $7DA8 $28 GPIO D
21 $7DAA $2A reserved by Motorola
22 $2C GPIO B - reserved for IsoPod
23 $2E GPIO A - reserved for IsoPod
24 $30 SPI transmitter empty - reserved for IsoPod

21 Use channel 6 only for critically-urgent interrupts, since it will take priority over channels 4 and 5, both
of which require prompt service.

Interrupt
Number

User
Vector

Kernel
Vector

Description

Address Address
25 $32 SPI receiver full/error - reserved for IsoPod
26 $7DB4 $34 Quad decoder #1 home
27 $7DB6 $36 Quad decoder #1 index pulse
28 $7DB8 $38 Quad decoder #0 home
29 $7DBA $3A Quad decoder #0 index pulse
30 $7DBC $3C Timer D Channel 0
31 $7DBE $3E Timer D Channel 1
32 $7DC0 $40 Timer D Channel 2
33 $7DC2 $42 Timer D Channel 3
34 $7DC4 $44 Timer C Channel 0
35 $7DC6 $46 Timer C Channel 1
36 $48 Timer C Channel 2 - reserved for IsoPod
37 $4A Timer C Channel 3 - reserved for IsoPod
38 $7DCC $4C Timer B Channel 0
39 $7DCE $4E Timer B Channel 1
40 $7DD0 $50 Timer B Channel 2
41 $7DD2 $52 Timer B Channel 3
42 $7DD4 $54 Timer A Channel 0
43 $7DD6 $56 Timer A Channel 1
44 $7DD8 $58 Timer A Channel 2
45 $7DDA $5A Timer A Channel 3
46 $7DDC $5C SCI #1 Transmit complete
47 $5E SCI #1 transmitter ready - reserved for IsoPod
48 $7DE0 $60 SCI #1 receiver error
49 $62 SCI #1 receiver full - reserved for IsoPod
50 $7DE4 $64 SCI #0 Transmit complete
51 $66 SCI #0 transmitter ready - reserved for IsoPod
52 $7DE8 $68 SCI #0 receiver error
53 $6A SCI #0 receiver full - reserved for IsoPod
54 $7DEC $6C reserved by Motorola
55 $7DEE $6E ADC A Conversion complete
56 $7DF0 $70 reserved by Motorola
57 $7DF2 $72 ADC A zero crossing/error
58 $7DF4 $74 Reload PWM B
59 $7DF6 $76 Reload PWM A
60 $7DF8 $78 PWM B Fault
61 $7DFA $7A PWM A Fault
62 $7DFC $7C PLL loss of lock
63 $7DFE $7E low voltage detector

1.14.4. Clearing the User Vector Table
Since the user vector table is at the high end of Flash ROM, it will be erased by the
SCRUB command (which erases all of the user-programmable Flash ROM).

If you wish to erase only the user vector table, you should use the command

 HEX 7D00 PFERASE

This will erase 256 words of Program Flash ROM, starting at address 7D00. In other
words, this will erase locations 7D00-7DFF, which includes the user vector table.
Because of the limitations of Flash ROM, you cannot erase a smaller segment -- you must
erase 256 words. However, this is at the high end of Flash ROM and is unlikely to affect
your application program, which is built upward from low memory.

When Flash ROM is erased, all locations read as $FFFF. This is an illegal CPU
instruction. So it is very important that you install an interrupt vector before you enable
the corresponding interrupt! If you enable a peripheral interrupt when no vector has
installed, you will cause an Illegal Instruction trap and the IsoPod will reset.22

1.14.5. Installing an Interrupt Vector
Once the Flash ROM has been erased, you can write data to it with the PF! operator.
Each location can be written only once, and must be erased before being written with a
different value.23

For example, this will program the low-voltage-detect interrupt to jump to address zero.
(This will restart the IsoPod, since address zero is the reset address.)

 HEX E984 7DFE PF! 0 7DFF PF!

E984 is the machine language opcode for an absolute jump; this is written into the first
word of the vector. The destination address, 0, is written into the second word. Because
these addresses are in Flash ROM, you must use the PF! operator. An ordinary !
operator will not work.

1.14.6. Precautions when using Interrupts
1. An unprogrammed interrupt vector will contain an FFFF instruction, which is an
illegal instruction on the DSP56F805. Don’t enable an interrupt until after you have
installed its interrupt vector.

2. Remember that most interrupts must be cleared at the source before your service
routine Returns from Interrupt (with an RTI instruction). If you forget to clear the
interrupt, you may end in an infinite loop.

3. Remember that SCRUB will erase all vectors in the user table. Be sure to disable all of
the interrupts that you have enabled, before you use SCRUB.

22 This is why the “illegal instruction” interrupt is reserved for IsoMax. If it were vectored to the user table,
and you did not install a vector for it, the attempt to service an illegal instruction would cause yet another
illegal instruction, and the CPU would lock up.
23 Strictly speaking, you can write a Flash ROM location more than once, but you can only change “1” bits
to “0.” Once a bit has been written as “0”, you need to erase the ROM page to return it to a “1” state.

4. You cannot erase a single vector in the user table. You must use HEX 7D00
PFERASE to erase the entire table. As with SCRUB, be sure to disable all of your
interrupt sources first.

5. Do not use the global interrupt enable (bits I1 and I0 in the Status Register) to disable
your peripheral interrupts. This will also shut off the interrupts that are used by IsoMax,
and the IsoPod will likely halt.

6. It is permissible to disable interrupts globally for extremely brief periods -- on the
order of a few machine instructions -- in order to perform operations that mustn’t be
interrupted. But this may affect critical timing within IsoMax, and is generally
discouraged.

7. You can perform the action of an IsoPod reset by jumping to absolute address zero.
But note that, unlike a true hardware reset, this will not disable any interrupt sources that
you may have enabled.

1.15. Interrupt Handlers in High-Level Code
Interrupt handlers must be written in machine code. However, you can write a machine
code “wrapper” that will call a high-level IsoMax word to service an interrupt. This
application note describes how. You may find it useful to refer to the previous sections
Machine Code Programming and Using CPU Interrupts in the IsoPod.

1.15.1. How it Works
The machine code routine below works by saving all the registers used by IsoMax, and
then calling the ATO4 routine to run a high-level IsoMax word. The high-level word
returns to the machine code, which restores registers and returns from the interrupt.

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P, \ MOVE Y1,X:(SP)+
D08B P, \ MOVE A0,X:(SP)+
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P, \ MOVE B0,X:(SP)+
D70B P, \ MOVE B1,X:(SP)+
D38B P, \ MOVE B2,X:(SP)+
D80B P, \ MOVE R0,X:(SP)+
D90B P, \ MOVE R1,X:(SP)+
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(SP)+
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+
DF8B P, \ MOVE LA,X:(SP)+
F854 P, OBJREF P, \ MOVE X:OBJREF,R0
FA54 P, WP P, \ MOVE X:WP,R2
D80B P, \ MOVE R0,X:(SP)+
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on last push!
87D0 P, xxxx P, \ MOVE #$XXXX,R0 ; This is the CFA of the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved objref
FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:FWP
D854 P, OBJREF P, \ MOVE R0,X:OBJREF
FE9B P, \ MOVE X:(SP)-,LC
FD1B P, \ MOVE X:(SP)-,N
FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1

F19B P, \ MOVE X:(SP)-,B0
F29B P, \ MOVE X:(SP)-,A2
F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
F01B P, \ MOVE X:(SP)-,X0
EDD9 P, \ RTI
END-CODE

The only registers that are saved automatically by the processor are PC and SR. All other
registers that will be used must be saved manually. To allow a high-level routine to
execute, we must save R0-R3, X0, Y0, Y1, A, B, N, LC, and LA. Two registers that
need not be saved are M01 and OMR, because these registers are never used or changed
by IsoMax. We must also save the two variables WP and OBJREF, which are used by the
IsoMax interpreter and object processor.

Since the DSP56F805 processor does not have a “pre-increment” address mode, the first
push must be preceded by a stack pointer increment, LEA (SP)+, and the last push must
not increment SP.

The instruction ordering may seem peculiar; this is because a MOVE to an address
reigster (Rn) has a one-instruction delay. So we always interleave another unrelated
instruction after a MOVE x, Rn. Note also the use of the symbols ATO4 and OBJREF to
obtain addresses. The variable WP is located at hex address 0041 in current IsoMax
kernels, and this is defined as a constant for readability.

The value shown as “xxxx” in the listing above is where you must put the Code Field
Address (CFA) of the desired high-level word. You can obtain this address with the
phrase

 ' word-name CFA

1.15.2. Use of Stacks
The interrupt routine will use the same Data and Return stacks as the IsoMax command
interpreter, that is, the “main” program.24 Normally this is not a problem, because
pushing new data onto a stack does not affect the data which is already there. However,
you must take care that your interrupt handler leaves the stacks as it found them – that is,
does not leave any extra items on the stack, or consume any items that were already there.
A stack imbalance in an interrupt handler is a very quick way to crash the IsoPod.

1.15.3. Use of Variables
Some high-level words use temporary variables and buffers which are not saved when an
interrupt occus. One example is the numeric output functions (. D. F. and the like).

24The IsoMax state machine uses an independent set of stacks.

You should not use these words within your interrupt routine, since this will corrupt the
variables that might be used by the main program.

1.15.4. Re-Entrancy
To avoid re-entrancy problems, it is best to not re-enable interrupts within your high-level
interrupt routine. Interrupts will be re-enabled automatically by the RTI instruction,
when your routine has finished its processing.

You must of course be sure to clear the interrupt source in your high-level service
routine. If you fail to do so, when the RTI instruction is executed, a new interrupt will
instantly occur, and your program will be stuck in an infinite loop of interrupts.

1.15.5. Example: Millisecond Timer
This example uses Timer D2 to increment a variable at a rate of once per millisecond.
After loading the entire example, you can use START-TMRD2 to initialize the timer, set
up the interrupt controller for that timer, and enable the interrupt. From that point on, the
variable TICKS will be incremented on every interrupt. You can fetch the TICKS
variable in your main program (or from the command interpreter).

The high-level interrupt service routine is INT-SERVICE. It does only two things. First
it clears the interrupt source, by clearing the TCF bit in the Timer D2 Status and Control
Register. Then it increments the variable TICKS. As a rule, interrupt service routines
should be as short and simple as possible. Remember, no other processing takes place
while the interrupt is being serviced.

You can stop the timer interrupt with STOP-TMRD2.

\ Count for 1 msec at 5 MHz timer clock
DECIMAL 5000 CONSTANT TMRD2_COUNT EEWORD
HEX

0C00 CONSTANT IOBASE EEWORD \ use 1000 for ServoPod

\ Timer D2 registers
IOBASE 0170 + CONSTANT TMRD2_CMP1 EEWORD
IOBASE 0173 + CONSTANT TMRD2_LOAD EEWORD
IOBASE 0176 + CONSTANT TMRD2_CTRL EEWORD
IOBASE 0177 + CONSTANT TMRD2_SCR EEWORD

\ GPIO interrupt control register
FFFB CONSTANT GPIO_IPR EEWORD
2000 CONSTANT GPIO_IPL_2 EEWORD \ bit which enables Channel 2 IPL

\ Interrupt vector & control.
\ Timer D channel 2 is vector 36, IRQ table address $48
0040 7D80 + CONSTANT TMRD2_VECTOR EEWORD

\ Timer D channel 2 is controlled by Group Priority Register GPR8, bits
2:0
\ Timer will use interrupt priority channel 2
IOBASE 0268 + CONSTANT TMRD2_GPR EEWORD
0007 CONSTANT TMRD2_PLR_MASK EEWORD
0003 CONSTANT TMRD2_PLR_PRIORITY EEWORD \ pri’ty channel 2 in bits 2:0

\ Initialize Timer D2
: START-TMRD2

 \ Set compare 1 register to desired # of cycles
 TMRD2_COUNT TMRD2_CMP1 !

 \ Set reload register to zero
 0 TMRD2_LOAD !

 \ Timer control register
 \ 001 = normal count mode
 \ 1 011 = IPbus clock / 8 = 5 MHz timer clock
 \ 0 0 = secondary count source n/a
 \ 0 = count repeatedly
 \ 1 = count until compare, then reinit
 \ 0 = count up
 \ 0 = no co-channel init
 \ 000 = OFLAG n/a
 \ 0011 0110 0010 0000 = $3620
 3620 TMRD2_CTRL !

 \ Timer status & control register
 \ Clear TCF flag, set interrupt enable flag
 8000 TMRD2_SCR CLEAR-BITS
 4000 TMRD2_SCR SET-BITS

 \ Interrupt Controller
 \ set the interrupt channel = 3 for Timer D3
 TMRD2_PLR_MASK TMRD2_GPR CLEAR-BITS
 TMRD2_PLR_PRIORITY TMRD2_GPR SET-BITS

 \ enable that interrupt channel in processor status register
 GPIO_IPL_2 GPIO_IPR SET-BITS
; EEWORD

\ Stop Timer D2
: STOP-TMRD2
 \ Timer control register
 \ 000x xxxx xxxx xxxx = no count
 E000 TMRD2_CTRL CLEAR-BITS

 \ Timer status & control register
 \ Clear TCF flag, clear interrupt enable flag
 C000 TMRD2_SCR CLEAR-BITS
; EEWORD

VARIABLE TICKS EEWORD

\ High level word to handle the timer D2 interrupt
: TMRD2-IRPT
 \ clear the TCF flag to clear the interrupt
 8000 TMRD2_SCR CLEAR-BITS
 \ increment the ticks counter
 1 TICKS +!
; EEWORD

HEX 0041 CONSTANT WP EEWORD

CODE-SUB INT-SERVICE
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P, \ MOVE Y1,X:(SP)+
D08B P, \ MOVE A0,X:(SP)+
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P, \ MOVE B0,X:(SP)+
D70B P, \ MOVE B1,X:(SP)+
D38B P, \ MOVE B2,X:(SP)+
D80B P, \ MOVE R0,X:(SP)+
D90B P, \ MOVE R1,X:(SP)+
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(SP)+
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+
DF8B P, \ MOVE LA,X:(SP)+
F854 P, OBJREF P, \ MOVE X:OBJREF,R0
FA54 P, WP P, \ MOVE X:WP,R2
D80B P, \ MOVE R0,X:(SP)+
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on last push!
87D0 P, ' TMRD2-IRPT CFA P, \ MOVE #$XXXX,R0 ; CFA of the word to
execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved objref

FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:WP
D854 P, OBJREF P, \ MOVE R0,X:OBJREF
FE9B P, \ MOVE X:(SP)-,LC
FD1B P, \ MOVE X:(SP)-,N
FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1
F19B P, \ MOVE X:(SP)-,B0
F29B P, \ MOVE X:(SP)-,A2
F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
F01B P, \ MOVE X:(SP)-,X0
EDD9 P, \ RTI
END-CODE EEWORD

\ Install the interrupt vector in Program Flash ROM
E984 TMRD2_VECTOR PF! \ JMP instruction
' INT-SERVICE CFA 2+ TMRD2_VECTOR 1+ PF! \ target address

To install this interrupt you must have an IsoMax kernel version 0.5 or greater. This has
a table of two-cell interrupt vectors starting at $7D80. The first cell (at $7D80+$40 for
Timer D2) must be a machine-code jump instruction, $E984; the second cell is the
address of the interrupt service routine. This address is obtained with the phrase '
INT-SERVICE CFA 2+ because the first two locations of a CODE-SUB or CODE-
INT are “overhead.” The interrupt vector is not installed with EEWORD; instead, it is
programmed directly into Program Flash ROM with the PF! operator.

Observe also the use of ' TMRD2-IRPT CFA to obtain the address “xxxx” of the high-
level interrupt service routine.

This example is shown running out of Program ROM; that is, the words have been
committed to Flash ROM with EEWORD. In an application you want your interrupt
handler to reside in ROM so that it survives a reset or a memory crash. (Leaving an
interrupt vector pointing to RAM, and then power-cycling the board, can cause the board
to lock up.)

1.16. Harvard Memory Model
The IsoPod Processor uses a "Harvard" memory model, which means that it has separate
memories for Program and Data storage. Each of these memory spaces uses a 16-bit
address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-bit
words of Data ("X") memory.

1.16.1. MEMORY OPERATORS
Most applications need to manipulate data, so the memory operators use Data space.
These include

@ ! C@ C! +! HERE ALLOT , C,

Occasionally you will need to manipulate Program memory. This is accomplished
through a separate set of memory operators having a "P" prefix:

P@ P! PC@ PC! PHERE PALLOT P, PC,

Note that on the IsoPod™, the smallest addressable unit of memory is one 16-bit word.
This is the unpacked character size. This is also the "cell" size used for arithmetic and
addressing. Therefore, @ and C@ are equivalent, and ! and C! are equivalent.

1.16.2. WORD STRUCTURE
The executable "body" of a IsoMax™ word is kept in Program space. This includes the
Code Field of the word, and the threaded definition of high-level words or the machine
code definition of CODE words.

The "header" of a IsoMax™ word is also kept in Program space. This includes the Name
Field, the Link Field, and the PFA Pointer. However, this may be stored separately from
the executable “body.” This is to allow the headers, which aren’t used for an embedded
application, to be easily stripped.

Program Space

 .
.
.

CFA Code Field
PFA Threaded code

(high level words)

or

Machine code
(CODE words)

 .
.
.

Program Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

If you have not enabled separated heads, the words you add to the dictionary will have
the header immedately before the executable body.

1.16.3. VARIABLES

Since the Program space is normally ROM, and variables must reside in RAM and in
Data space, the "body" of a VARIABLE definition does not contain the data. Instead, it
holds a pointer to a RAM location where the data is stored.

Program Space

 .
.
.

CFA Code Field
PFA RAM Pointer

 .
.
.

Data Space

 .
.
.

 data
 .

.

.

1.16.4. <BUILDS DOES>

"Defining words" created with <BUILDS and DOES> may have a variety of purposes.
Sometimes they are used to build Data objects in RAM, and sometimes they are used to
build objects in ROM (i.e., in Program space). In the <BUILDS code you can allocate
either space by using the appropriate memory operators.

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 Allocate with
PHERE PALLOT

P, PC,
 .

.

.

Data Space

 .
.

.

 Allocate with
HERE ALLOT

, C,
 .

.

.

For maximum flexibility, DOES> will leave on the stack the address in Program
space of the user-allocated data. If you need to allocate data in Data space, you must
also store (in Program space) a pointer to that data. For example, here is how you might
define VARIABLE using <BUILDS and DOES>.

: VARIABLE
 <BUILDS Defines a new Forth word, header and empty body;
 HERE gets the address in Data space (HERE) and appends that to Program space;
 0 , appends a zero cell to Data space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (a pointer to Data) and return that.
;

This constructs the following:

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 RAM pointer
 .

.

.

Data Space

 .
.

.

 0 (data)
 .

.

.

Words with constant data, on the other hand, can be allocated entirely in Program space.
Here's how you might define CONSTANT:

: CONSTANT (n --)
 <BUILDS Defines a new Forth word, header and empty body;
 P, appends the constant value (n) to Program space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (the constant) and return that.
;

This constructs the following:

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 N (constant value)
 .

.

.

Data Space

 .
.

.

1.17. Object Oriented Internals
For this illustration we will use the BYTEIO
class from the file Gpioobj.4th (appended below).

1.17.1. Dictionary Hiding
BEGIN-CLASS marks the start of definitions
that will be "hidden." Once they are hidden, they
will only be visible to members of this class.
BEGIN-CLASS just marks a dictionary position;
it doesn't compile anything.

PUBLIC marks the end of the hidden definitions.
It does two things. First, it puts a pointer to the
last-defined word (i.e., the last hidden word) in
the context-last variable. This means these words
will still be found when the CONTEXT list is
searched. Second, it relinks the main dictionary
list around the hidden words, by resetting the last
variable.

At this point, the hidden words are still
searchable, and can still be used to write Forth
definitions. New definitions will be "public" and
will be part of the main dictionary list, not the
hidden list.

END-CLASS hides the private definitions, by
clearing CONTEXT. It also creates a class-name
word (in this example, BYTEIO) which will
make the private word list visible again, by
putting its dictionary link back into the context-
last variable.

1.17.2. Object Action
A word created with OBJECT has both a
compile-time action and a run-time action. At
compile-time (or when interpreted), it makes its
hidden word list visible, by putting the dictionary
link into the context-last variable. Thus, after an
object is named, its private "methods" can be
compiled or interpreted.

BASEADDR

IS-INPUT

IS-OUTPUT

PUTBYTE

GETBYTE

I/O

previous word

PORTA

later word

PORTB

BYTEIO

previous word

context-last

last

CURRENT

CONTEXT

PUBLIC

BEGIN-CLASS

END-CLASS

later word

Code
Field
(DII)

DOES>
code

pointer

namelength link pfaptr

hidden
words
pointer

Parameters
(supplied by
programmer)

Body

Header

CFA PFA PFA+1 PFA+2

At run-time, an object puts the address of its parameters (PFA+2) into the OBJREF
variable. This is essentially the same as DOES>, except that the address is stored into a
variable instead of being left on the stack. The "methods" which follow the object all
expect to find this address in OBJREF. (The word SELF returns this address.)

Note: when an object is used in a Forth definition, what actually gets compiled is a literal
(in-line constant) with the address PFA+2. Thus the phrase PORTA GETBYTE is
compiled as

CFA of OBJLIT
PFA+2

of PORTA
object

CFA of GETBYTE
definition from
PORTA's class

Code
Field
(DII)

NFA of
I/O

(link)

DOES>
code

pointer
0xFB0PORTA definition

in Program space

.

The special word OBJLIT takes the in-line value which follows, and stores it in the
OBJREF variable. This is exactly the same as the Forth primitive LIT, except that the
value is stored in a variable instead of being left on the stack.

In this example, the PORTA definition has one user-supplied parameter: the value
0xFB0, which is the I/O address of the desired port. The object is created, and this extra
parameter is appended, by the word I/O (see below).

\ ---
\ GPIO PARALLEL PORTS - BYTE I/O
\ ---
BEGIN-CLASS BYTEIO

\ BYTEIO methods expect SELF to point to: baseaddr in ROM
: BASEADDR (-- a) SELF P@ ;

: IS-INPUT (makes pin an input
 0FF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO
 0FF BASEADDR 2+ CLEAR-BITS (data dir=in

;

: IS-OUTPUT (makes pin an output
 0FF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO
 0FF BASEADDR 2+ SET-BITS (data dir=out
;

: PUTBYTE (c --) IS-OUTPUT BASEADDR 1+ C! ;
: GETBYTE (-- c) IS-INPUT BASEADDR 1+ C@ ;

\ define an I/O port
: I/O (baseaddr --) OBJECT P, ;

PUBLIC

FB0 I/O PORTA
FC0 I/O PORTB

END-CLASS BYTEIO

1.18. CPU Registers

Under construction…

 (BASE REGISTERS)
0C00 SIM
0C40 PFIU2
0D00 TMRA
0D20 TMRB
0D40 TMRC
0D60 TMRD
0D80 CAN
0E00 PWMA
0E20 PWMB
0E40 DEC0
0E50 DEC1
0E60 ITCN
0E80 ADCA
0EC0 ADCB
0F00 SCI0
0F10 SCI1
0F20 SPI
0F30 COP
0F40 PFIU
0F60 DFIU
0F80 BFIU
0FA0 CLKGEN
0FB0 GPIOA
0FC0 GPIOB
0FE0 GPIOD
0FF0 GPIOE

(TIMER REGISTERS. OFFSET IS CHANNEL * 8)

0 CMP1
1 CMP2
2 CAP
3 LOAD
4 HOLD
5 CNTR
6 CTRL
7 SCR

(GPIO)

0 PUR
1 DR
2 DDR
3 PER
4 IAR
5 IENR
6 IPOLR

7 IPR
8 IESR

 (A/D CONVERTER)

0 ADCR1
1 ADCR2
2 ADZCC
3 ADLST1
4 ADLST2
5 ADSDIS
6 ADSTAT
7 ADLSTAT
8 ADZCSTAT
9 ADRSLT0
A ADRSLT1
B ADRSLT2
C ADRSLT3
D ADRSLT4
E ADRSLT5
F ADRSLT6
10 ADRSLT7
11 ADLLMT0
12 ADLLMT1
13 ADLLMT2
14 ADLLMT3
15 ADLLMT4
16 ADLLMT5
17 ADLLMT6
18 ADLLMT7
19 ADHLMT0
1A ADHLMT1
1B ADHLMT2
1C ADHLMT3
1D ADHLMT4
1E ADHLMT5
1F ADHLMT6
20 ADHLMT7
21 ADOFS0
22 ADOFS1
23 ADOFS2
24 ADOFS3
25 ADOFS4
26 ADOFS5
27 ADOFS6
28 ADOFS7

(PWM)

0 PMCTL
1 PMFCTL
2 PMFSA
3 PMOUT
4 PMCNT
5 PWMCM
6 PWMVAL0

7 PWMVAL1
8 PWMVAL2
9 PWMVAL3
A PWMVAL4
B PWMVAL5
C PMDEADTM
D PMDISMAP1
E PMDISMAP2
F PMCFG
10 PMCCR
11 PMPORT

(QUAD)

0 DECCR
1 FIR
2 WTR
3 POSD
4 POSDH
5 REV
6 REVH
7 UPOS
8 LPOS
9 UPOSH
A LPOSH
B UIR
C LIR
D IMR
E TSTREG

(SCI)

0 SCIBR
1 SCICR
2 SCISR
3 SCIDR

(SPI)

0 SPSCR
1 SPDSR
2 SPDRR
3 SPDTR

	ADVANCED PROGRAMMING
	IsoPod, MinPod, TinyPod, PlugaPod Memory Map
	ServoPod Memory Map
	Earlier IsoMax Kernels Memory Maps
	IsoMax v0.3 Memory Map
	IsoMax v0.6 Memory Map
	IsoMax v0.6 Memory Map – DSP56807

	Starting IsoMax State Machines
	Using INSTALL to start a State Machine
	Removing a State Machine
	Changing the IsoMax Speed
	Stopping and Restarting IsoMax
	Running More Than 16 Machines
	Using SCHEDULE-RUNS
	Autostarting State Machines

	IsoMax State Machine Language Reference
	Defining State Machines
	Declaring States
	Defining States
	Defining Input Conditions
	Defining Output Actions
	Defining Procedural Actions

	IsoMax Performance Monitoring
	An Example State Machine
	IsoMax Processing Time
	Exceeding the Allotted Time
	Automatic Overflow Processing
	Counting IsoMax Iterations

	Loop Indexes
	Defining a Loop Index
	Counting
	Using the Loopindex Value
	A "DO loop"Example
	An IsoMax Example
	Summary of Loopindex Operations

	Random Number Generator
	Implementation Details

	Autostarting an IsoMax Application
	The Autostart Search
	Writing an Application to be Autostarted
	Installing an Autostart Application
	Saving the RAM data for Autostart
	Removing an Autostart Application
	Bypassing the Autostart
	Summary

	SAVE-RAM
	Data Memory Map
	Saving the RAM image
	Flash erasure

	Restoring the RAM image
	Restoring the RAM image manually

	IsoPod™ Reset Sequence
	In summary:

	Object Oriented Extensions
	Action of an Object
	Defining a new class
	Defining an object
	Referencing an object
	Object Structure
	Example using ROM and RAM

	Machine Code Programming
	Assembler Programming
	CODE functions
	CODE-SUB functions
	CODE-INT functions
	Register Usage
	Calling High-Level Words from Machine Code

	Using CPU Interrupts in the IsoPod
	Interrupt Vectors in Flash ROM
	Writing Interrupt Service Routines
	The User Interrupt Vector Table
	Clearing the User Vector Table
	Installing an Interrupt Vector
	Precautions when using Interrupts

	Interrupt Handlers in High-Level Code
	How it Works
	Use of Stacks
	Use of Variables
	Re-Entrancy
	Example: Millisecond Timer

	Harvard Memory Model
	MEMORY OPERATORS
	WORD STRUCTURE
	VARIABLES
	<BUILDS DOES>

	Object Oriented Internals
	Dictionary Hiding
	Object Action

	CPU Registers

