Differences 3.3t0 3.5

Motorola has decided to discontinue the 68HC11A8, which is the heart of our F68HC11 V3.3. We have
until September of this year ('99) to place final ordersfor the VV3.3. After those orders are filled, we will
not have a source for F68HC11 V3.3 anymore, and therefore, will not be able to supply them to you.

The F68HC11 3.5 will continue to be available into the foreseeable future. The F6BHC11 V3.5 is based on
the 6BHC11E9. There are some differences between the two parts although they are on the whole very
similar. Both parts are in 52 pin PLCC's and are interchangeabl e in the same socket. Existing software
may, or may not, work, however. The purpose of this|etter isto identify the differences.

Also, we would like to offer our assistance in making your product transition from V3.3to V3.5, or
possible a newer processor or updated design. In many cases the V3.5 will be a drop in replacement,
however, we have long been encouraging our customers to move to the V3.5, and we know some have
resisted, or not been able to, for software reasons. We've given this situation some thought. We may be
able to help you convert your software from V3.3 dependencies to V3.5 compatibility, even if your source
code or programmer islong gone. We may be able to "decompile” old code in many cases and rebuild
source.

If conversion is not possible, which will be only in the rarest cases, updating your product might be
desirable, anyway. Again, old code can be decompiled (although it is always easier to start from the
original source and engineering notes) and move to newer processor. Power, speed, and features may be
improved in the process. Please consider letting us help you with your engineering needs.

The differences between the V3.3 and the V3.5 over all are minor. They fall into four groups: Ports,
Registers, Memory Map and Operating System.

Ports

An added feature of the E9 (our V3.5) over the A8 (our V3.3) isthe bidirectionality of the Port A, line 3.
Unfortunately the part powers up with this pin as an input, where it used to be an output. The original A8
part's Port A had three inputs (PAO-2), four outputs (PA3-6), and one bidirectional line (PA7). Three
Input Captures and five Output Compares corresponded to the inputs and outputs respectively. In the A8
part, PA3 is an output only, and had output compare abilities only. In the E9 part, probably to get a

bal ance between Input Capture and Output Compare functions, PA3 became programmable as a
bidirectional line with both the Output Compare ahilities it had previously, and the Input Capture feature
added. All this would have been fine, since the old functionality was still there, with one exception. If the
default state of PA3 had been an output, like the previous part, the added features would have not been
noticed. However, typical software written for the A8 part would not have to take any action to change
PA3 to an output, since it wasn't possible to change it before. In the E9 part, plugged into an A8 socket,
the software must initialize the PACTL register to establish PA3 as an output. Otherwise, the software
will writeto PA3 (still an input), but nothing will come out.

Registers

The next compatibility issues to be discussed are the register changes. As mentioned the PACTL register
has an additional bit, Bit3, to control the direction of PA3. Since this bit was unused previously, there
should be little effect. However, any writes to the PACTL in the existing software for other purposes
might accidentally turn PA3 back into an input.

A similar situation exists in the same register in the next bit, PACTL Bit2. In the A8 version, it was
unused.

In the E9 version it chooses which of the available two functions are associated with PA3, Input Capture,
or Output Compare. Like the direction hit, the default state is opposite in the two parts. The power up

state of the E9 makes PACTL PA3 an input (as previously noted) and assigns the Input Capture function
toit. So, existing software that uses the Output Compare function will not work unlessthe PACTL is
reprogrammed on power up, and all other writes to the PACTL in the program might need to be modified
to avoid accidentally changing the 14/O5 bit.

The TCTL2 Register also had bits added to support the Input Compare 4 feature in the E9. These are the
top two bitsin the register. Since these bits were unused in the A8, the existing software will most likely
be unaffected by this change.

Finally, an added register to the E9, called the BPROT Register is present, where there was an empty
location before. Since these bits were unused in the A8, the existing software will most likely be
unaffected by this change. The operating system of V3.5 manages the settings in this register on power up
to be compatible with the V3.3 part.

Memory map

The largest change between the two parts was the increase in memory resource. The A8 had only 256
bytes of internal RAM, while the E9 has twice as much, 512 bytes. Generally more wouldn't seem to be a
problem. Assuming lower external memory is not used at all, the existing software will probably work fine
without much natice. If the lower external memory is used for RAM, the new RAM will over map the
external RAM. The existing software will probably work well, aslong as there is not a battery-backup
issue, where internal is backed and external is not, or vice versa. The area of potential conflict is restricted
to the additional RAM at |ocations 0100-01FF.

Another potential problem with the added RAM might be found in use of free space. Since twice the RAM
was available on the E9 part over the A8 part, the operating system spread some of the movable software
features around. The TIB was enlarged and moved, and PAD was moved with it. The stacks are al'so
moved and expanded. An additional floating-point stack was added, and the Dictionary Point was moved
to the end of all other structures, so it did not have to be specifically moved outside internal RAM to make
aprogram of size.

Conversion of existing software to work with the E9 should take these address changes into account. If the
program lives well in the Max-FORTH paradigm, many of these uses will be transparent. References to
PAD, TIB, DP, etc., are vectored through the user area, which remained in the same place.

Early examples for the A8 often moved TIB and the DP to external RAM during development. The
addresses suggested were 100 in TIB and 200 in DP. The DP will do fine at 200, but the TIB AT 100 may
interfere with the descending data stack in the E9 V3.5 system.

More difficulty may exist in dealing with the ROM changes. The ROM size increased by 50% from the
A8 (V3.3) to E9 (V3.5). In the original A8, only 8K ROM was available. Max-Forth was fit in the space
available. When the new E9 came out, the additional 4K of memory was not optional - there are no 8K E9
available. So the additional of memory was used to add floating point code, patches to the existing
software, and additional dictionary heads, which were left orphaned in the first version. Great pains were
taken to keep the entry points between the two software versions compatible. For instance the address of
DUPin V3.3 isthe same address as DUP in the new V3.5. Code written for the V3.3 will execute without
modification on the V3.5 version, and run. Whether it operates correctly depends on the PA3 and register
usage described above. However, a great deal of compatibility was gained by retaining entry points.

The mostly likely problem to arise is the loss of the D000 4K memory block. Examples for the A8 V3.3
system often used the target program area of C000. Aslong as programs made at C000 are less than 4K in
length, they will not encounter a conflict. However, if any program uses program EPROM (EEPROM,
ROM etc.) in the DOOO area, the program will not be seen, for being overshadowed by the expanded
internal ROM. The same would be true for any peripherals mapped in the DOOO block. If programs are

small, they may be relocated elsewhere in memory. This could be accomplished as simply as doing a
recompilation of the source. If programs are large, for instance, occupying all of the memory from 8000 to
DFFF, some other technique might have to be used. Without hardware changes, the only hope to make
existing software fit into the smaller space might be a rewrite of the code to reduce its size. However, there
are techniques which can reduce program size. For instance, headerless code compilation can often reduce
code size by up to half. Again, if we can be of assistance, we are available by contract to work with you on
these changes.

Operating System Changes

A few things were changed in the V3.5 Operating System as well. Most of these changes should improve
performance, or correct afew minor errors in the kernel. The biggest change which would be likely
noticed between the two versions, would be in increase in speed in the math routines. The division
routines were considerably improved in speed, and made smaller as well. Unless this increased speed
causes time dependencies to arise, no changes should be required to existing software.

Most of the improvement occurred in the words:

CODE- SUB Moved to Assenbl er Vocabul ary

DM N Fi xed, Erroneously did DMAX
2ROT Fi xed, Erroneously off target
EEC! El i m nat ed dependence on TOC5
UM MOD Better division

0 Fi xed, Speed

(LOOP) Better |ooping

(+LOOP) " "

/ MOD Better division

/ n n

M n n

; CODE Fi x concerni ng <BU LDS DOES>
FI ND Reduced dependency on Y register
| NDEX Fi xed

THRU Fi xed

FI LL Fi xed

STATE | mpr oved

[made i rmedi at e

mat ches [

